

# DATA SHEET

# SAP1024B Dot Matrix STN LCD Controller with 1024-byte Font ROM

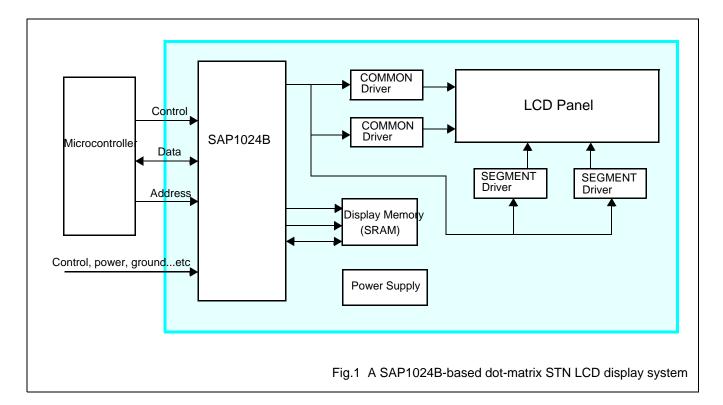
To improve design and/or performance, Avant Electronics may make changes to its products. Please contact Avant Electronics for the latest versions of its products

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 1 GENERAL

## 1.1 Description

The SAP1024B is a dot-matrix STN LCD controller. It is desinged to be used together with SEGMENT drivers, COMMON drivers, and Display data SRAM to build a complete display system for STN LCD modules.


The SAP1024B has on-chip font ROM. Each font is composed of 8 dots x 8 dots, and totally 128 fonts are available on-chip. The fonts are pre-defined during chip fabrication.

The SAP1024B has 16-bit address bus and necessary control bus to interface to an external Display Memory of up to 64K bytes. Text data, graphic data, or both can be freely allocated to the Display Memory. In addition to storing text data and graphic data, user-definable fonts can also be stored on the Display Memory. The maximum number of user-definable fonts is 256.

The SAP1024B has an 8-bit data bus and necessary control bus to interface to a host microcontroller. The host microcontroller, via the SAP1024B, can send commands to the SAP1024B, such that the SAP1024B can perform various display operation. User-definable fonts can also be written to the Display Memory via the SAP1024B. Many types of microcontrollers, such as 80C51 or Z80, can easily interface to the SAP1024B.

A wide variety of LCD panels are surpported. Both the number of characters in horizontal direction (columns) and the number of characters in vertical direction (lines) are hardware-programmable. Number of dots of a font in both the horizontal direction and vertical direction is also hardware-programmable. In addition, the actual number of displayed columns can be adjusted via software programming.

The following diagram shows a typical SAP1024B-based dot-matrix STN display system. Please note that interface between the microcontroller and the SAP1024B may be different for different types of microcontroller.



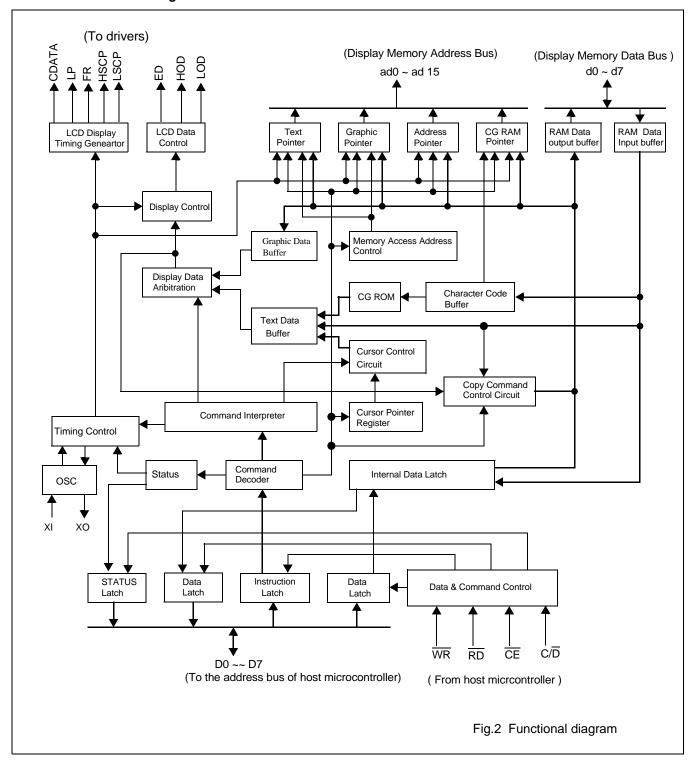
## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 2 FEATURES

- Display format (pin-selectable)
  - Columns: 32, 40, 64, 80 (number of characters in X-direction.)
  - Lines : 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32 (number of characters in Y-direction.)
- · Character font:
  - Horizontal dots: 5, 6, 7, 8 (pin-selectable)
  - Vertical dots : 8 (fixed, that is, always 8 dots in the vertical direction.)
- Display duty: 1/16 to 1/128
- 128 on-chip fonts, with each font having 8-dots x 8-dots.
- Interface to external Display Memory of up to 64K bytes.
- Memory space in Display Memory for text area, graphic area and font generator area can be freely allocated via softeware programming of related registers.
- 256 user-definable fonts on the external Display Memory.
- Read/Write operations between the host microcontroller and the SAP1024B do not disturb the display.
- · On-chip crystal oscillator.
- · Attribute functions, such as blinking and reverse display, for text display.
- Logical OR, AND, and EXOR operation between text display and graphic display.
- 1~8 raster scan lines for cursor pattern
- 8-bit parallel interface with a host microcontroller.
- Read/Write operation between the host microcontroller and the SAP1024B for status check, command, and data.
- Operating voltage range (control logic): 2.7 ~ 5.5 volts..
- Operating frequency range: 5.5 MHz, when V<sub>DD</sub>= 5 volts.
- Operating temperature range: -20 to +70 °C.
- Storage temperature range: -55 to +125 °C.

Dot Matrix STN LCD Controller with 1024-byte Font ROM

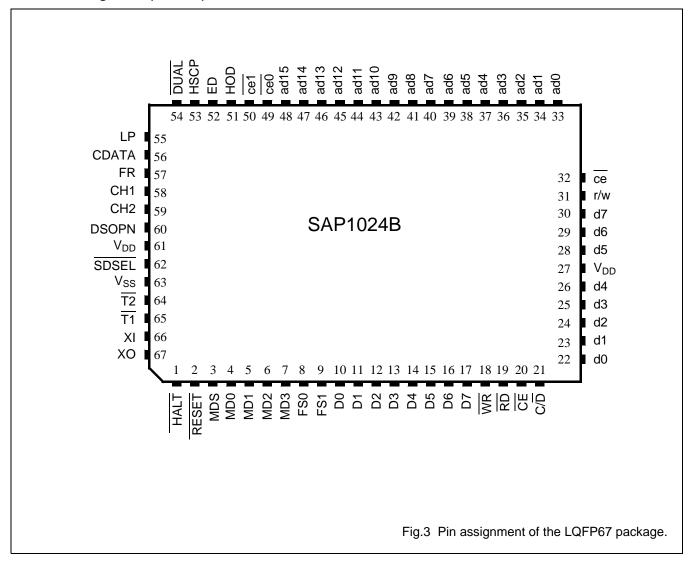
## 3 ORDERING INFORMATION


Table 1 Ordering information

| TYPE NUMBER            | DESCRIPTION                             |
|------------------------|-----------------------------------------|
| SAP1024B-0101-LQFPG    | Code 0101, LQFP67 Pb-free package.      |
| SAP1024B-0101-QFPG     | Code 0101, QFP67 Pb-free package.       |
| SAP1024B-0101-LQFP     | Code 0101, LQFP67 general package.      |
| SAP1024B-0101-QFP      | Code 0101, QFP67 general package.       |
| SAP1024B-customer code | Font ROM codes can also be custom-made. |

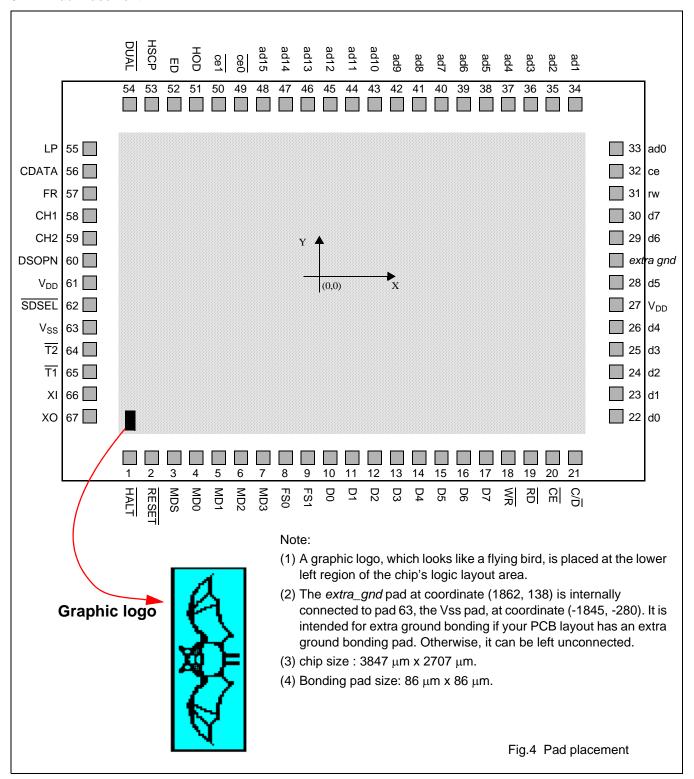
# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 4 FUNCTIONAL BLOCK DIAGRAM AND DESCRIPTION


## 4.1 Funtional block diagram



Dot Matrix STN LCD Controller with 1024-byte Font ROM


## 5 PIN ASSIGNMENT, PAD PLACEMENT AND COORDINATES, SIGNAL DESCRIPTION

## 5.1 Pin assignment (LQFP67)



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 5.2 Pad Placement



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 5.3 Pad coordinates

**Table 2** The SAP1024B pad coordinates (unit:  $\mu$ m)

| PAD NO.     | PAD NAME  | Х     | Υ     |
|-------------|-----------|-------|-------|
| 1           | HALT      | -1460 | -1281 |
| 2           | RESET     | -1313 | -1281 |
| 3           | MDS       | -1167 | -1281 |
| 4           | MD0       | -1020 | -1281 |
| 5           | MD1       | -873  | -1281 |
| 6           | MD2       | -726  | -1281 |
| 7           | MD3       | -579  | -1281 |
| 8           | FS0       | -433  | -1281 |
| 9           | FS1       | -286  | -1281 |
| 10          | D0        | -140  | -1281 |
| 11          | D1        | 7     | -1281 |
| 12          | D2        | 154   | -1281 |
| 13          | D3        | 301   | -1281 |
| 14          | D4        | 447   | -1281 |
| 15          | D5        | 594   | -1281 |
| 16          | D6        | 741   | -1281 |
| 17          | D7        | 888   | -1281 |
| 18          | WR        | 1035  | -1281 |
| 19          | RD        | 1182  | -1281 |
| 20          | CE        | 1329  | -1281 |
| 21          | C/D       | 1476  | -1281 |
| 22          | d0        | 1862  | -855  |
| 23          | d1        | 1862  | -708  |
| 24          | d2        | 1862  | -561  |
| 25          | d3        | 1862  | -415  |
| 26          | d4        | 1862  | -268  |
| 27          | $V_{DD}$  | 1862  | -133  |
| 28          | d5        | 1862  | 3     |
| extra gnd ( | optional) | 1862  | 138   |
| 29          | d6        | 1862  | 273   |
| 30          | d7        | 1862  | 420   |
| 31          | r/w       | 1862  | 567   |
| 32          | ce        | 1862  | 714   |
| 33          | ad0       | 1862  | 861   |

| PAD NO. | PAD NAME        | х     | Υ    |
|---------|-----------------|-------|------|
| 34      | ad1             | 1476  | 1286 |
| 35      | ad2             | 1329  | 1286 |
| 36      | ad3             | 1182  | 1286 |
| 37      | ad4             | 1036  | 1286 |
| 38      | ad5             | 889   | 1286 |
| 39      | ad6             | 742   | 1286 |
| 40      | ad7             | 595   | 1286 |
| 41      | ad8             | 448   | 1286 |
| 42      | ad9             | 302   | 1286 |
| 43      | ad10            | 155   | 1286 |
| 44      | ad11            | 8     | 1286 |
| 45      | ad12            | -139  | 1286 |
| 46      | ad13            | -286  | 1286 |
| 47      | ad14            | -433  | 1286 |
| 48      | ad15            | -579  | 1286 |
| 49      | ce0             | -726  | 1286 |
| 50      | ce1             | -873  | 1286 |
| 51      | HOD             | -1020 | 1286 |
| 52      | ED              | -1167 | 1286 |
| 53      | HSCP            | -1313 | 1286 |
| 54      | DUAL            | -1459 | 1286 |
| 55      | LP              | -1845 | 860  |
| 56      | CDATA           | -1845 | 713  |
| 57      | FR              | -1845 | 566  |
| 58      | CH1             | -1845 | 419  |
| 59      | CH2             | -1845 | 273  |
| 60      | DSOPN           | -1845 | 126  |
| 61      | $V_{DD}$        | -1845 | -10  |
| 62      | SDSEL           | -1845 | -144 |
| 63      | V <sub>SS</sub> | -1845 | -280 |
| 64      | T2              | -1845 | -415 |
| 65      | T1              | -1845 | -561 |
| 66      | XI              | -1845 | -708 |
| 67      | XO              | -1845 | -855 |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 5.4 Signal description

 Table 3
 Pin signal description.

To avoid a latch-up effect at power-on:  $V_{SS}$  – 0.5 V < voltage at any pin at any time <  $V_{DD}$  + 0.5 V .

| Pin<br>number | SYMBOL           | I/O          |                                                                                                                      | DESCRIPTION                                             |                 |                  |                                     |                       |               |                |                            |                |                |        |         |              |               |          |                |
|---------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------|------------------|-------------------------------------|-----------------------|---------------|----------------|----------------------------|----------------|----------------|--------|---------|--------------|---------------|----------|----------------|
|               |                  |              | Oscillator halt input. This pin has an internal pull-up resistor.                                                    |                                                         |                 |                  |                                     |                       |               |                |                            |                |                |        |         |              |               |          |                |
| 1             | HALT             | input        | When this pin is at logic LOW, the on-chip oscillator is halted. When this logic HIGH, the oscillator runs normally. |                                                         |                 |                  |                                     |                       | this          | pin i          | s at                       |                |                |        |         |              |               |          |                |
|               |                  |              | Reset                                                                                                                | Reset input. This pin has an internal pull-up resistor. |                 |                  |                                     |                       |               |                |                            |                |                |        |         |              |               |          |                |
| 2.            | RESET            | Input        | A low this pi                                                                                                        |                                                         |                 |                  |                                     |                       |               |                |                            |                |                | •      | ely re  | set tl       | ne S <i>i</i> | 4P10     | )24B,          |
|               |                  |              | Select                                                                                                               | ion o                                                   | f line          | num              | ber (                               | i.e.,                 | dot ı         | numb           | er in                      | vert           | ical           | direct | tion).  |              |               |          |                |
|               | MDS, MD0,<br>MD1 |              | These number number                                                                                                  | er of o                                                 | displa<br>a dua | ay lin<br>al-scr | es (i.<br>een                       | e., n<br>displ        | umbo<br>ay is | er of<br>twice | chara<br>e that            | acter          | rs in          | the v  | ertica  | al dir       | ectio         |          |                |
| 3, 4, 5       |                  | input        | 1 screen                                                                                                             |                                                         |                 |                  |                                     | ı                     | 2 screens     |                |                            |                |                |        |         |              |               |          |                |
| 3, 4, 3       |                  |              | DUAL<br>MDS                                                                                                          | H<br>0                                                  | H<br>0          | H<br>0           | H<br>0                              | H<br>1                | H<br>1        | H<br>1         | H<br>1                     | L<br>0         | L<br>0         | 0      | L<br>0  | L<br>1       | L<br>1        | L<br>1   | 1              |
|               |                  |              | MD1                                                                                                                  | 1                                                       | 1               | 0                | 0                                   | 1                     | 1             | 0              | 0                          | 1              | 1              | 0      | 0       | 1            | 1             | 0        | 0              |
|               |                  |              | MD0                                                                                                                  | 1                                                       | 0               | 1                | 0                                   | 1                     | 0             | 1              | 0                          | 1              | 0              | 1      | 0       | 1            | 0             | 1        | 0              |
|               |                  |              | Lines                                                                                                                | 2<br>16                                                 | 32              | 6<br>48          | 8                                   | 10                    | 12            | 14             | 16                         | 32             | 8<br>64        | 12     | 16      | 20           | 24            | 28       | 32             |
|               |                  |              | Note: I                                                                                                              | n the                                                   | abo             | ve ta            | ble, '                              |                       |               |                |                            | umb            | er o           |        |         | 160<br>rs in | 192<br>the \  | <b>└</b> | 256<br>cal     |
| 6, 7          | MD2, MD3         | 2, MD3 input |                                                                                                                      |                                                         | umn<br>n nun    | are fo<br>numl   | or han<br>ber is<br>s can<br>er. Pl | rdwa<br>s the<br>be a | num<br>ıdjus  | ber c          | of cha<br>y pro<br>Section | ograr<br>on 12 | ers ii<br>nmir | n num  | izont   | al dir       | ectic         | n.       | umns.<br>er or |
|               |                  |              |                                                                                                                      |                                                         |                 | ML<br>Colu       |                                     |                       |               | 3:             |                            |                | H<br>10        |        | L<br>64 |              | 80            |          |                |
|               |                  |              |                                                                                                                      |                                                         |                 | Colu             | 11115                               |                       |               | ٥.             | ۷.                         | 4              | Ю              | 1      | 04      |              | 00            |          |                |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

| Pin<br>number   | SYMBOL   | 1/0    | DESCRIPTION                                                      |                                                                                         |                               |                                        |                              |               |                                 |                                   |  |
|-----------------|----------|--------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|------------------------------|---------------|---------------------------------|-----------------------------------|--|
|                 |          |        | Selection of                                                     | character font typ                                                                      | е.                            |                                        |                              |               |                                 |                                   |  |
| 8, 9            | FS0, FS1 | Input  | number of do                                                     | ns are for hardwa<br>ots of a font is fixe<br>5, 6, 7, or 8. Hov<br>ease refer to Secti | d to 8. In ho<br>vever, fonts | rizontal d<br>are alway                | rection, total               | number of ded | ots of                          |                                   |  |
|                 |          |        |                                                                  | FS0                                                                                     | Н                             | L                                      | Н                            | L             |                                 |                                   |  |
|                 |          |        |                                                                  | FS1                                                                                     | Н                             | Н                                      | L                            | L             |                                 |                                   |  |
|                 |          |        |                                                                  | Font                                                                                    | 5 x 8                         | 6 x 8                                  | 7 x 8                        | 8 x 8         |                                 |                                   |  |
| 10 ~ 17         | D0 ~ D7  | I/O    | Data, comma                                                      | I data bus betwee<br>ands, and status a<br>nis data bus has a                           | are written t                 | o or read                              | rom the SAP                  |               |                                 |                                   |  |
| 18              | WR       | Input  | WRITE contr                                                      | rol bus between the Low, the system reported by the Do~D7 data bus                      | ne SAP1024                    | 1B and the                             | system mici                  |               | 3. The                          |                                   |  |
|                 |          |        | READ contro                                                      | ol bus between the                                                                      | SAP1024                       | B and the                              | system micro                 | controller.   |                                 |                                   |  |
| 19              | RD       | Input  |                                                                  | Low, the system ron the D0~D7 data                                                      |                               | ler can re                             | ad data from                 | the SAP102    | 4B.                             |                                   |  |
|                 |          |        | Chip Enable signal of the SAP1024B.                              |                                                                                         |                               |                                        |                              |               |                                 |                                   |  |
| 20              | CE       | Input  | System micro<br>to the SAP10                                     | ocontroller must p<br>024B.                                                             | ut this sign                  | al to LOW                              | to do READ/                  | WRITE ope     | ration                          |                                   |  |
|                 |          |        |                                                                  | COMMAN / STAT<br>and the host micro                                                     |                               | A for data                             | transfer betw                | een the       |                                 |                                   |  |
|                 |          |        | WR                                                               | L                                                                                       | L                             | Н                                      |                              | Н             |                                 |                                   |  |
| 21              | C/D      | Innut  | RD                                                               | Н                                                                                       | Н                             | L                                      |                              | L             |                                 |                                   |  |
| 21              | (C/D     | Input  | C/D                                                              | Н                                                                                       | L                             | Н                                      |                              | L             |                                 |                                   |  |
|                 |          |        |                                                                  |                                                                                         | Operation                     | write<br>command to<br>the<br>SAP1024B | write data<br>the<br>SAP1024 | fro           | ead status<br>om the<br>AP1024B | Read data<br>from the<br>SAP1024I |  |
| 22~26,<br>28~30 | d0~d7    | I/O    | Data bus bet                                                     | ween the SAP102                                                                         | 24B and Dis                   | splay Men                              | nory.                        |               |                                 |                                   |  |
| 27              | VDD      |        | Power supply                                                     | y pin.                                                                                  |                               |                                        |                              |               |                                 |                                   |  |
| 04              |          | Out 1  | Control signal for the external Display Memory.                  |                                                                                         |                               |                                        |                              |               |                                 |                                   |  |
| 31              | r/w      | Output | r/w=H, read from Display memory. r/w=L, write to Display memory. |                                                                                         |                               |                                        |                              |               |                                 |                                   |  |
| 32              | се       | Output | Chip Enable                                                      | signal for the exte                                                                     | ernal Displa                  | y Memory                               |                              |               |                                 |                                   |  |
|                 |          |        | Address bus                                                      | for the Display M                                                                       | emory.                        |                                        |                              |               |                                 |                                   |  |
| 33~48           | ad0~ad15 | Output |                                                                  |                                                                                         |                               |                                        |                              |               |                                 |                                   |  |
|                 |          |        | ad15=H is fo                                                     | r lower area of LC                                                                      | D (LCD2).                     |                                        |                              |               |                                 |                                   |  |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

| Pin<br>number | SYMBOL     | I/O     | DESCRIPTION                                                                                                                                    |
|---------------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            |         | This is a dual function pin.                                                                                                                   |
| 49            | ce0(LOD)   | Output  | When DUAL=H, this pin acts as ce0 pin. ce0 is the Chip Enable signal for the external Display Memory in the address range from 0000H to 07FFH. |
|               |            |         | When DUAL=L, this pin ascts as LOD pin. LOD is the serial data output for odd columns in the lower area of LCD.                                |
|               |            |         | This is a dual function pin.                                                                                                                   |
| 50            | ce1 (LSCP) | Output  | When DUAL=H, this pin acts as ce1 pin. ce1 is the Chip Enable signal for the external Display Memory in the address range from 0800H to 0FFFH. |
|               |            |         | When DUAL=L, this pin ascts as LSCP pin. LSCP is the shift clock pulse for column(segment) drivers for the lower area of LCD.                  |
| 51            | HOD        | Output  | Data output for odd columns in upper area of LCD.                                                                                              |
| 52            | ED         | Quitout | If SDSEL=H, this pin is the data output for even columns in both upper and lower areas of LCD.                                                 |
| 52            |            | Output  | If SDSEL= L, this pin is the data output for columns in both upper and lower areas of LCD.                                                     |
| 53            | HSCP       | Output  | Shift clock pulse for column(segment) driver of the upper area of LCD.                                                                         |
| E A           | DUAL       | lanut   | DUAL=H→ Select single-scan LCD.                                                                                                                |
| 54            |            | Input   | DUAL=L→ Select dual-scan LCD.                                                                                                                  |
|               | LP         |         | Line Pulse, indicating the start of a horizontal scan line.                                                                                    |
| 55            |            | Output  | This output is used as latch pulse of the column (segment) driver, for latching display data.                                                  |
|               |            |         | This ouput is also used as shift clock pulse of row (common) driver.                                                                           |
| 56            | CDATA      | Output  | Synchronous signal for row (common) driver.                                                                                                    |
| 57            | FR         | Output  | Frame signal, indicating the start of a new display frame.                                                                                     |
| 58            | CH1        | Output  | Check signal.                                                                                                                                  |
| 59            | CH2        | Output  | Check singal.                                                                                                                                  |
| 00            | DCCDN      | 0       | Control pin for external DC/DC converter.                                                                                                      |
| 60            | DSOPN      | Output  | DSPON goes to LOW, when either HALT or RESET is low.                                                                                           |
| 61            | VDD        |         | Power supply.                                                                                                                                  |
|               |            | 1.      | $H \rightarrow$ sending data by odd/even separation.                                                                                           |
| 62            | SDSEL      | Input   | L → sending data by simple serial method.                                                                                                      |
| 63            | VSS        |         | Ground.                                                                                                                                        |
| 64            | T2         | input   | Test pin.                                                                                                                                      |
| 65            | T1         | Input   | Test pin.                                                                                                                                      |
| 66            | XI         | Input   | Crystal oscillator input.                                                                                                                      |
| 67            | XO         | Output  | Crystal oscillator output.                                                                                                                     |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

# 5.5 Pin states after RESET, HALT

 Table 4
 Pin state after RESET, HALT

| PIN      | HALT                                                         | RESET                                                        |
|----------|--------------------------------------------------------------|--------------------------------------------------------------|
| D0~D7    | floating                                                     | floating                                                     |
| d0~d7    | floating                                                     | floating                                                     |
| r/w      | Н                                                            | Н                                                            |
| ce       | H <sup>(1)</sup>                                             | H <sup>(1)</sup>                                             |
| ad0~ad15 | H <sup>(2)</sup>                                             | H <sup>(2)</sup>                                             |
| ce0, ce1 | H <sup>(1)</sup>                                             | H <sup>(1)</sup>                                             |
| ED, HOD  | Unchanged, that is, the state prior to the occurence of HALT | Unchanged, that is, the state prior to the occurenc of RESET |
| HSCP     | L                                                            | L                                                            |
| LP       | L                                                            | L                                                            |
| CDATA    | Н                                                            | Н                                                            |
| FR       | Н                                                            | Н                                                            |
| DSPON    | L                                                            | L                                                            |
| XO       | Н                                                            | OSC clock                                                    |
| CH1      | L                                                            | Test signal                                                  |
| CH2      | L                                                            | Test signal                                                  |

## Note

- 1. In Attribute mode, High or Low according to state of graphic pointer.
- 2. In Attribute mode, data of graphic pointer.

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 6 THE RELATIONSHIP BETWEEN NUMBER OF ROW/COLUMN AND OSCILLATION CLOCK

## 6.1 Caculation of oscillator frequency

The calculation of oscillator frequency is described below:

f<sub>OSC</sub>: Frequency of oscillation

f<sub>SCP</sub>: Frequency of shift clock

f<sub>R</sub>: Frequency of Frame

M: Number of characters on one horizontal row. As the maximun number of dots of each scan line of a character has 8 horizontal dots, total number of dots in a horizontal scan line is 8M.

N: Number of horizontal rows. As the maximum number of each character has 8 dots in vertical direction, the total liner of scan lines is 8N and the display duty cycle is 1/8N.

Total number of dots per frame= 8M x 8N

Time needed to display a frame=  $1/f_R$  = [total number of dots per frame] x [period of a dot clock] = (8M x 8N) x ( $1/f_{SCP}$ ).

$$\frac{8M}{f_{SCP}} \times 8N = \frac{1}{f_R}$$

As fosc= 2 x  $f_{SCP}$ , the above equation can be re-written as **fosc=**  $f_R$  x 2 x 8M x 8N, where  $f_R$  is usually 60Hz.

The following table gives the oscillator frequency for various combination of M and N, with  $f_R = 60$  Hz.

Table 5 Oscillator frequency

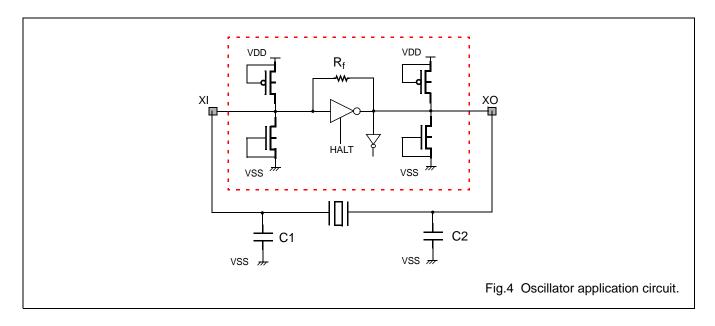
| M  | 32    | 40    | 64     | 80     | DUTY  |
|----|-------|-------|--------|--------|-------|
| 2  | 0.492 | 0.614 | 0.983  | 1.229  | 1/16  |
|    | 0.983 | 1.229 | 1.966  | 2.458  |       |
| 4  | 0.983 | 1.229 | 1.966  | 2.458  | 1/32  |
| 4  | 1.966 | 2.458 | 3.932  | 4.915  |       |
| 6  | 1.475 | 1.843 | 2.949  | 3.686  | 1/48  |
| 0  | 2.949 | 3.686 | 5.898  | 7.372  |       |
| 8  | 1.966 | 2.458 | 3.932  | 4.915  | 1/64  |
| 0  | 3.932 | 4.915 | 7.864  | 9.830  |       |
| 10 | 2.458 | 3.072 | 4.915  | 6.144  | 1/80  |
| 10 | 4.915 | 6.144 | 9.830  | 12.288 |       |
| 12 | 2.949 | 3.686 | 5.898  | 7.373  | 1/96  |
| 12 | 5.898 | 7.373 | 11.776 | 14.746 |       |
| 14 | 3.440 | 4.300 | 6.881  | 8.602  | 1/112 |
| 14 | 6.881 | 8.601 | 13.763 | 17.203 |       |
| 16 | 3.932 | 4.915 | 7.864  | 9.830  | 1/128 |
| 10 | 7.864 | 9.830 | 15.729 | 19.660 |       |

## Note:

- 1. The upper cell with yellow shading is for single scan.
- 2. The lower cell without yellow shading is for dual scan.
- The frame frequency (f<sub>R</sub>) is 60 Hz.

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 6.2 External clock source


External clock source can be used to replace the on-chip oscillator. When using external clock source, use the XI pin as clock input and leave XO pin unconnected.

## 6.3 The on-chip oscillator

The value of the external capacitors C1 and C2 for crystal resonator should be in the range from 20 pF to 30 pF. The value of C1 and C2 for ceramic resonator should be in the range from 30 pF to 100 pF.

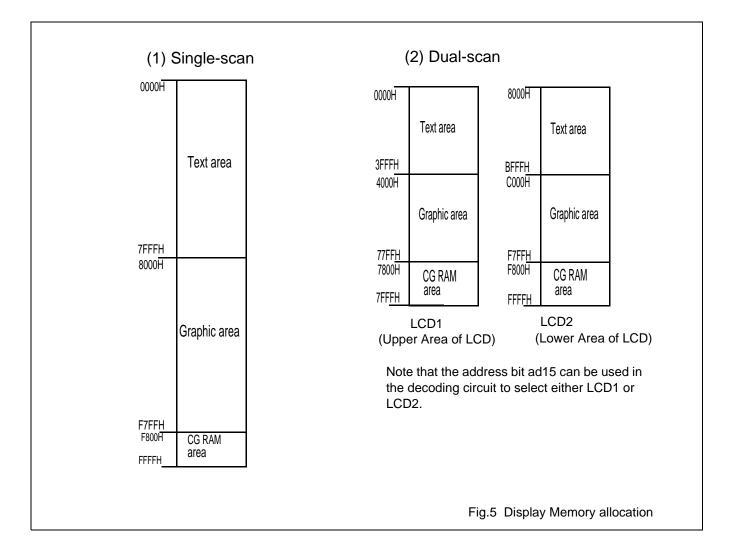
On PCB layout, C1 and C2 should be placed as close to the chip as possible, such that the side effect of parasitic inductance, capacitance and resistance can be minimized.

The value of the on-chip feedback resistor  $R_f$  is 900  $k\Omega$  (typ.)



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 7 EXTERNAL DISPLAY MEMORY


The external Display Memory must be static RAM. It is for storing text data, graphic data, external user-defined Character Generator (CG) fonts, and attribute data for text display. Memory for attribute data of text display can overlap with or reside in graphic area.

In single-scan application, text data, graphic data, attribute data, and external user-defined CG data can be freely allocated to the whole memory space of the Display Memory (maximum 64K).

In dual-scan application, the memory area for LCD1 is allocated to the space from 0000H to 7FFFH (32K bytes, maximum) and that for LCD2 is allocated to the space from 8000H to FFFFH (32K bytes, maximum). Text data, graphic data, and CG data can be freely allocated to any area of the memory space in LCD1. In LCD2, the corresponding memory regions, as that for the LCD1, must be allocated to the text area, graphic area, and the Character Generator RAM, except address bit ad15. Address bit ad15 can be used in the address decoding circuit to distinguish LCD1 from LCD2. ad15=L selects LCD1 and ad15=H selects LCD2.

Two signals,  $\overline{\text{ce0}}$  and  $\overline{\text{ce1}}$ , can be used to help decoding memory blocks with 4K boundary.  $\overline{\text{ce0}}$  can be used to decode memory block in the range from 0000H to 07FFH.  $\overline{\text{ce1}}$  can be used to decode memory blocks in the range from 0800H to 0FFFH.

An example of memory space allocation is given below:



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 8 MICROCONTROLLER INTERFACE

## 8.1 READ/WRITE operation to the SAP1024B

A microcontroller can write command to the SAP1024B or read status from it. A microcontroller can do Read/Write operation to the Display Memory, via SAP1024B.

Data or commands are put on the data bus D0~D7. Inside the SAP1024B, there is an latch for each bit of D0~D7.

The operations between the host microcontroller and the SAP1024B are: Write Data, Read Data, Write Command, and Read Status. It is the host microcontroller's responsibility to put proper control signals and timing on the contol bus for these Read/Write operation.

Table 6 gives control signal setting.

Table 6 Read/Write operation between the host microcontroller and the SAP1024B

| Operation                         | Description                                          |  |  |  |  |
|-----------------------------------|------------------------------------------------------|--|--|--|--|
|                                   | 1. The data to be written should be put on D0~D7.    |  |  |  |  |
|                                   | 2. C/D should be set to low.                         |  |  |  |  |
| Write Data to the Display Memory  | 3. WR should be set to low.                          |  |  |  |  |
| the Display Memory                | 4. RD should be set to high.                         |  |  |  |  |
|                                   | 5. CE should be set to low.                          |  |  |  |  |
|                                   | 1. C/D should be set to low.                         |  |  |  |  |
| Dood Data from                    | 2. WR should be set to high.                         |  |  |  |  |
| Read Data from the Display Memory | 3. RD should be set to low.                          |  |  |  |  |
| ine Biopiay Memory                | 4. CE should be set to low.                          |  |  |  |  |
|                                   | 5. The data appears on D0~D7.                        |  |  |  |  |
|                                   | 1. The command to be written should be put on D0~D7. |  |  |  |  |
| Write Command to                  | 2. C/D should be set to high.                        |  |  |  |  |
| the SAP1024B                      | 3. WR should be set to low.                          |  |  |  |  |
|                                   | 4. RD should be set to high.                         |  |  |  |  |
|                                   | 5. CE should be set to low.                          |  |  |  |  |
|                                   | 1. C/D should be set to high.                        |  |  |  |  |
| Dood Ctatus from                  | 2. WR should be set to high.                         |  |  |  |  |
| Read Status from the SAP1024B     | 3. RD should be set to low.                          |  |  |  |  |
|                                   | 4. CE should be set to low.                          |  |  |  |  |
|                                   | 5. The status of the SAP1024B appears on D0~D7.      |  |  |  |  |

## 8.2 Hardware interface connection

Examples of hardware interface connection with host microcontroller are given in Fig 30 and Fig 31.

## 8.3 Interface timing

For detailed interface timing, please refer to Fig.26.

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 9 STATUS CHECK

The system microcontroller must perform a status check before writing data to or reading data from the SAP1024B. The purpose of status check is to make sure that the SAP1024B has finished previous command or operation and is ready to accept new command or data.

## 9.1 Status Register

To read the status of the SAP1024B, the host microcontroller must set the control bus to the proper states, as described in Table 6. The content of Status Register appears on D0~D7.

The format of the Status Register is given in table 7.

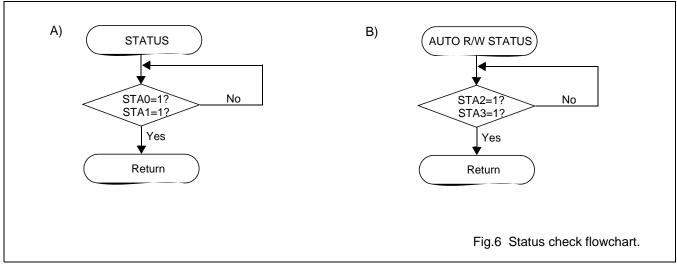
Table 7 Status Register format

| D7(MSB) | D6   | D5   | D4   | D3   | D2   | D1   | D0(LSB) |
|---------|------|------|------|------|------|------|---------|
| STA7    | STA6 | STA5 | STA4 | STA3 | STA2 | STA1 | STA0    |

Table 8 Description of Status Register bits

| BIT | SYMBOL | FUNCTION                                                                               |
|-----|--------|----------------------------------------------------------------------------------------|
|     |        | Command flag.                                                                          |
| D0  | STA0   | STA0=0 indicates that the SAP1024B is busy and can not accept new command.             |
|     |        | STA0=1 indicates that the SAP1024B is ready for accepting new command.                 |
|     |        | Data Read/Write flag.                                                                  |
| D1  | STA1   | STA0=0 indicates that the SAP1024B is busy and can not accept data read/write request. |
|     |        | STA0=1 indicates that the SAP1024B is ready for accepting data/reqd write request.     |
|     |        | Auto Data Read flag.                                                                   |
| D2  | STA2   | STA2=0 indicates that the SAP1024B is busy and can not accept Auto Data Read request.  |
|     |        | STA2=1 indicates that the SAP1024B is ready for accepting Auto Data Read request.      |
|     |        | Auto Data Write flag.                                                                  |
| D3  | STA3   | STA3=0 indicates that the SAP1024B is busy and can not accept Auto Data Write request. |
|     |        | STA3=1 indicates that the SAP1024B is ready for accepting Auto Data Write request.     |
| D4  | STA4   | Reserved.                                                                              |

## Dot Matrix STN LCD Controller with 1024-byte Font ROM


| BIT | SYMBOL | FUNCTION                                                                                |
|-----|--------|-----------------------------------------------------------------------------------------|
| D5  | STA5   | Check controller operation capability.                                                  |
| D3  | SIAJ   | 0= Disabled, 1= Enabled.                                                                |
|     |        | Error flag.                                                                             |
| D6  | STA6   | This command is used for commands SCREEN PEAK or SCREEN COPY.                           |
|     |        | STA6=0 indicates that Address Pointer is valid and that there is no error.              |
|     |        | STA6=1 indicates that Address Pointer is out of Graphic RAM area.                       |
|     |        | Blink flag.                                                                             |
| D7  | STA7   | Check the blink status. 0=blinking area of display off, 1= blinking area of display on. |

#### Note:

- 1. STA0 and STA1 must be checked at the same time. If a hardware interrupt occurs to the microcontorller during the check, the status on the data bus D0~D7 may not be correct.
- 2. For most modes, STA0 and STA1 are used as status check.
- In AUTO READ/WRITE mode, STA2 and STA3 indicates the real status of the SAP1024B. STA0 and STA1 do not indicates the real status of the SAP1024B in AUTO READ/WRITE mode.

### 9.2 Status check flowchart

Fig. 6 gives flow charts for writing status check subroutines.



## Note the following:

- Status check must be performed prior to issuing a MSB=0 command. If a status check is not performed, there is danger that the SAP1024B may not work properly, even after a delayed period of time.
- A hardware interrupt to the microcontroller may occur during the address calculation period (at the end of each line). If a MSB=0 command is sent to the SAP1024B during this period of time, it enters into Wait status.
- If a command is issued during Wait status, there is danger that command or data may not be received by the SAP1024B.

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 10 COMMANDS AND REGISTERS

## 10.1 Commands

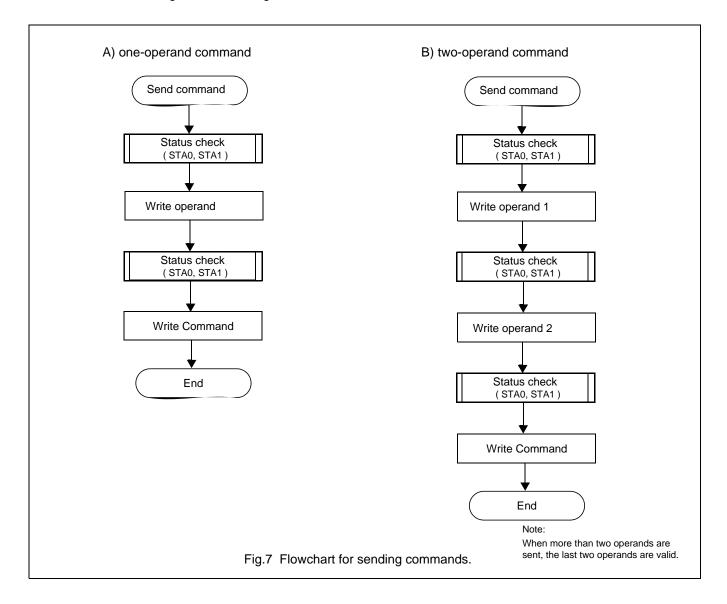
The SAP1024B has three types of command: one-byte command, two-byte command, and three-byte commands. A one-byte command has only command code. A two-byte command has command code and one operand (data). A three-byte command has command code and two operands.

Table 9 lists all the commands.

 Table 9
 Commands and Registers.

| COMMAND                 | CODE      | OPERAND 1   | OPERAND 2    | FUNCTION                  |
|-------------------------|-----------|-------------|--------------|---------------------------|
| <b>.</b>                | 0010 0001 | X address   | Y address    | Set cursor pointer        |
| Register<br>Setting     | 0010 0010 | Data        | 00H          | Set offset register       |
| Cetting                 | 0010 0100 | Low address | High address | Set address pointer       |
|                         | 0100 0000 | Low address | High address | Set text home address     |
| Set Control             | 0100 0001 | Columns     | 00H          | Set text area             |
| Word                    | 0100 0010 | Low address | High address | Set graphic home address  |
|                         | 0100 0011 | Columns     | 00H          | Set graphic area          |
|                         | 1000 x000 |             |              | OR mode                   |
|                         | 1000 x001 |             |              | EXOR mode                 |
| Mode Set                | 1000 x011 |             |              | AND mode                  |
| Wode Set                | 1000 x100 |             |              | Text Attribute mode       |
|                         | 1000 0xxx |             |              | Internal CG ROM mode      |
|                         | 1000 1xxx |             |              | External CG RAM mode      |
|                         | 1001 0000 |             |              | Display OFF.              |
|                         | 1001 xx10 |             |              | Cursor ON, blink OFF.     |
| Display mode            | 1001 xx11 |             |              | Cursor ON, blink ON.      |
| Display Mode            | 1001 01xx |             |              | Text ON, graphic OFF.     |
|                         | 1001 10xx |             |              | Text OFF, graphic ON.     |
|                         | 1001 11xx |             |              | Text ON, graphic ON.      |
|                         | 1010 0000 |             |              | Selec one-line cursor.    |
|                         | 1010 0001 |             |              | Select two-line cursor.   |
|                         | 1010 0010 |             |              | Select three-line cursor. |
| Cursor<br>Pattern       | 1010 0011 |             |              | Select four-line cursor.  |
| Select                  | 1010 0100 |             |              | Select five-line cursor.  |
|                         | 1010 0101 |             |              | Select six-line cursor.   |
|                         | 1010 0110 |             |              | Selec seven-line cursor.  |
|                         | 1010 0111 |             |              | Select eight-line cursor. |
| Data Auto               | 1011 0000 |             |              | Select Data Auto Write    |
| Data Auto<br>Read/Write | 1011 0001 |             |              | Select Data Auto Read     |
| TOGG/ WITE              | 1011 0010 |             |              | Reset Auto Read/Write     |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM


| COMMAND       | CODE       | OPERAND 1 | OPERAND 2 | FUNCTION                                  |
|---------------|------------|-----------|-----------|-------------------------------------------|
|               | 1100 0000  | Data      |           | Data Write and increment Address Pointer  |
|               | 1100 0001  |           |           | Data Read and increment Address Pointer   |
| Data READ /   | 1100 0010  | Data      |           | Data Write and decrement Address Pointer. |
| WRITE         | 1100 0011  |           |           | Data Read and decrement Address Pointer   |
|               | 1100 0100  | Data      |           | Data Write and Keep Address Pointer       |
|               | 1100 0101  |           |           | Data Read and Keep Address Pointer        |
| Screen Peek   | 1110 0000  |           |           | Screen peek                               |
| Screen Copy   | 1110 1000  |           |           | Screen copy                               |
|               | 1111 0xxxx |           |           | Bit Reset                                 |
|               | 1111 1xxxx |           |           | Bit Set                                   |
|               | 1111 x000  |           |           | Bit 0                                     |
|               | 1111 x001  |           |           | Bit 1                                     |
| Bit Set/Reset | 1111 x010  |           |           | Bit 2                                     |
| bit Set/Reset | 1111 x011  |           |           | Bit 3                                     |
|               | 1111 x100  |           |           | Bit 4                                     |
|               | 1111 x101  |           |           | Bit 5                                     |
|               | 1111 x110  |           |           | Bit 6                                     |
|               | 1111 x111  |           |           | Bit 7                                     |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 10.2 Sending a command and its operands.

When a command is sent, its operands should be sent out first. For a two-operand command, operand 2 should be sent out first. The command code itself is the last to be sent out.

The flow chart for sending a command is given below.

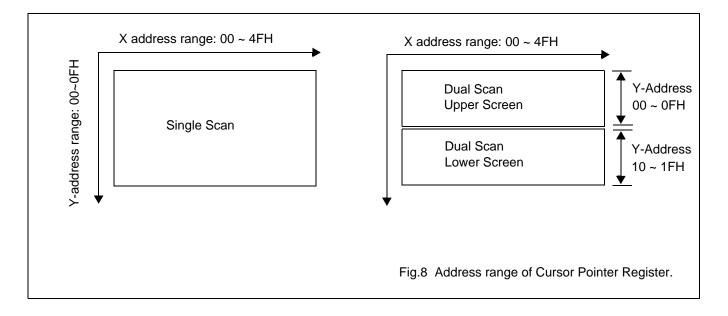


## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 11 PROGRAMMING REGISTERS

Each of the three registers, Cursor Pointer register, Offset Register, and Address Pointer Register, needs to be programmed with two operands, in addition to the command code.

Table 10 Setting registers


| Code      | Hex | Function                                 | D1                                                              | D2           |
|-----------|-----|------------------------------------------|-----------------------------------------------------------------|--------------|
| 0010 0001 | 21H | programming the Cursor Pointer Register. | X address                                                       | Y address    |
| 0010 0010 | 22H | programming the Offset Register          | Data( offset address<br>for accessing the<br>external Font RAM) | 00H          |
| 0010 0100 | 24H | programming the Address Pointer Register | Low address                                                     | High address |

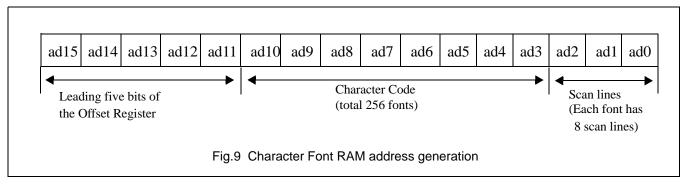
## 11.1 Programming the Cursor Pointer Register

The position of cursor is software-programmable by programming the Cursor Pointer Register. The Cursor Pointer Register specifies X address and Y address of the cursor. The position of the cursor can be changed only by changing the content of the Cursor Pointer Register.

For single-scan LCD, the range of X address is from 00H to 4FH, and the range of Y address is from 00H to 1FH.

For dual-scan LCD, the range of X address is: 00H to 4FH. The Y address range of the upper screen is: 00H to 0FH. The address range of the lower screen is: 10H to 1FH.




## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 11.2 Programming the Offset Register

## 11.2.1 THE OFFSET REGISTER

The Offset Register is a three-byte command. Its first operand is a data byte and its second operand is fixed with 00H. The lower five bits of its first operand is used as ad15, ad14, ad13, ad12, and ad11 of the ad15~ad0 address bus between the SAP1024B and the external Display Memory. This address is generated for programming external Character Generator Font RAM.

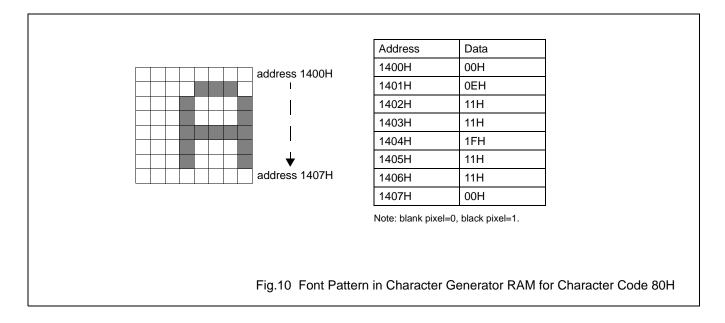
The ad15~ad0 address bus for programming external Character Generator Font RAM is cascaded from Leading 5 bits of the Offset Register, Font Character Code, and Scan line, as illustrated below.



The upper five bits (ad15~ad11) points at the starting address in external memory of the Character Generator RAM area. The next 8 bits (ad10~ad3) points at the starting address for each Character Code (font). Totally, 256 fonts can be defined if there is enough external Display Memory. The three least significant bits (ad2 ad0) points at each of the eight rows of each font. Each row of a font has 8 dots (pixel).

In Internal CG ROM mode, each of character codes from 00H to 7FH accesses a character or graphic font from on-chip Font ROM and each of character codes from 80H to FFH accesses a user-defined character or graphic font from external Font RAM. In External CG RAM mode, each of the 256 codes from 00H to FFH accesses a user-defined character or graphic font from external Font RAM.

## Dot Matrix STN LCD Controller with 1024-byte Font ROM


## 11.2.2 EXAMPLE OF FONT ROM ADDRESS AND OFFSET REGISTER

Assume that the Offset Register's first operand is programmed with a value of 02H (0000 0010B). So the lower five bits= 0 0 0 1 0 = ad15 ad14 ad13 ad12 ad11.

Assume that the Character Code is 80H= 1000 0000B = ad10 ad9 ad8 ad7 ad6 ad5 ad4 ad3.

The initial value of ad2, ad1, ad0 = 000.

So, the starting address of the font for Character Code 80H= ad15~ad0= 00010 1000 0000 000=1400H.



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 11.3 Progamming the Address Pointer Register

The Address Pointer Register points at a byte address of the Display Memory where a data Read/Write is to be performed.

The flow chart for progarmming Address Pointer Register is given in Figure 11.



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 12 SET CONTROL WORD

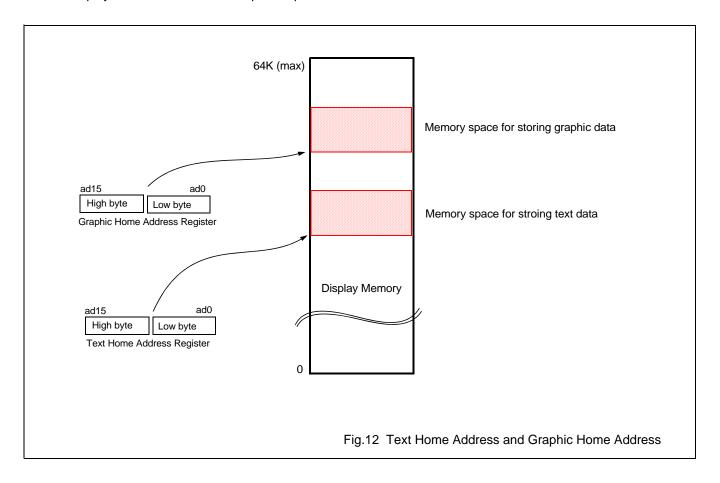

Four registers, Text Home Address Register, Text Area Register, Graphic Home Address Register, and Graphic Area Register, need to be programmed to define text display and graphic display.

Table 11 Set control word

| CODE      | HEX | FUNCTION                 | D1          | D2           |
|-----------|-----|--------------------------|-------------|--------------|
| 0100 0000 | 40H | Set text home address    | Low address | High address |
| 0100 0001 | 41H | Set text area            | Columns     | 00H          |
| 0100 0010 | 42H | Set graphic home address | Low address | High address |
| 0100 0011 | 43H | Set graphic area.        | Columns     | 00H          |

## 12.1 the Text Home Address Register

The Text Home Address Register is a 16-bit register and it points at the starting byte address of a block of memory space in the Display Memory, where data for text display are stored. The corresponding character of the first byte of the memory block is displayed at the left-most and top-most position on the LCD screen.



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 12.2 The relation between Display Memory and display position on LCD screen

As previously described, the first character on the LCD screen is the top-most and the left-most character and the memory address of this first character is pointed at by the Text Home Adrress Register. The characters on each line are displayed from left to right until the total number of displayed characters is equal to the value of Text Area Register.

The following figure illustrates the relation between Display Memory address and the display position on the LCD screen. Note that actual display on the LCD screen is adjusted by the Text Area Register (TA).

TH= Content of Text Home Address Register.

TA= Content of Text Area Register.

CL= Column number, selected by setting the MD2 pin and the MD3 pin.

n= line number, selected by setting pins DUAL, MDS, MD0, MD1.

| TH+0          | TH+1          | <br>TH+(CL-2)          | TH+(CL-1)          |
|---------------|---------------|------------------------|--------------------|
| TH+TA+0       | TH+TA+1       | <br>TH+TA+(CL-2)       | TH+TA+(CL-1)       |
| (TH+TA)+TA+0  | (TH+TA)+TA+1  | <br>(TH+TA)+TA+(CL-2)  | (TH+TA)+TA+(CL-1)  |
| (TH+2TA)+TA+0 | (TH+2TA)+TA+1 | <br>(TH+2TA)+TA+(CL-2) | (TH+2TA)+TA+(CL-1) |
|               |               |                        |                    |
| TH+(n-1)TA+0  | TH+(n-1)TA+1  | <br>TH+(n-1)TA+(CL-2)  | TH+(n-1)TA+(CL-1)  |

## Example:

Text Home Address Register(TH)= 0000H

Text Area Register(TA)= 0020H

Column number(CL)= 20H (MD2=H, MD3=H)

Line number(n)= 4, (DUAL=H, MDS=L, MD0=L, MD1=H)

| 0000 | 0001 | <br>001E | 001F |
|------|------|----------|------|
| 0020 | 0021 | <br>003E | 003F |
| 0040 | 0041 | <br>005E | 005F |
| 0060 | 0061 | <br>007E | 007F |

Fig.13 The relation between text display memory address and display position on the LCD screen

**SAP1024B** Avant Electronics

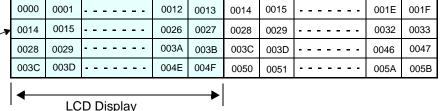
## Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 12.3 The Text Area Register

The number of characters displayed on a horizontal line, called columns, is decided by both hardware setting and software setting. The hardware setting of the MD2 pin and the MD3 pin selects hardware column number. The value of the Text Area Register selects the actual number of columns displayed on the LCD screen. For example, if hardware selection of display column number is 32 columns (MD2=1, MD3=1) and the Text Area Register is programmed with 14H (20 columns), then only 20 columns (characters) will be displayed on each horizontal line.

Hardware setting of columns per line only decides the "maximum" number of columns that can possibly be displayed on the LCD screen. Software setting of columns per line decides the actual display column number.

The following figure illustrates the hardware setting and software setting of columns.


Physical LCD size= 20 columns, 4 lines= 80 characters per frame.

Text Home Address Register= 0000H.

Text Area Register= 0014H= 20(decimal) (software setting of columns per line).

MD2=H, MD3=H --> 32 columns (hardware setting of columns per line.

DUAL=H, MDS=L, MD0=L, MD1=H --> 4 lines (hardware setting of line number)



Only 20 columns are displayed.

Because of being adjusted by TA to display only 20 columns on each line, the character for memory location 0014H will be moved to the first position on the second line of the LCD display.

Fig.14 Text Area Register

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 12.4 The Graphic Home Address Register

The Graphic Home Address Register, like the Text Home Address Register, is a 16-bit register and it points at the starting byte address of a block of memory space in the Display Memory, where data for text display are stored. Please refer to Fig. 12.

The corresponding graphic pattern of the first byte of the memory block is displayed at the left-most and top-most position on the LCD screen. The relation between display position and graphic display memory is illustrated below.

GH= Content of Graphic Home Address Register.

GA= Content of Graphic Area Register.

CL= Column number, selected by setting the MD2 pin and the MD3 pin.

n= line number, selected by setting pins DUAL, MDS, MD0, MD1.

| GH+0          | GH+1          | <br>GH+(CL-2)          | GH+(CL-1)          |
|---------------|---------------|------------------------|--------------------|
| GH+GA+0       | GH+GA+1       | <br>GH+GA+(CL-2)       | GH+GA+(CL-1)       |
| (GH+GA)+GA+0  | (GH+GA)+GA+1  | <br>(GH+GA)+GA+(CL-2)  | (GH+GA)+GA+(CL-1)  |
| (GH+2GA)+GA+0 | (GH+2GA)+GA+1 | <br>(GH+2GA)+GA+(CL-2) | (GH+2GA)+GA+(CL-1) |
|               |               |                        |                    |
| GH+(n-1)GA+0  | GH+(n-1)GA+1  | <br>GH+(n-1)GA+(CL-2)  | GH+(n-1)GA+(CL-1)  |

## Example:

Content of Graphic Home Address Register=GH= 0000H

Content of Graphic Area Register=GA= 0020H

Column number= CL= 32 columns (selected by setting pins MD2=H and MD3=H)

Line number=n= 2=16 horizonal scan lines, ( selected by setting pins DUAL=H, MDS=L, MD0=H, MD1=H)

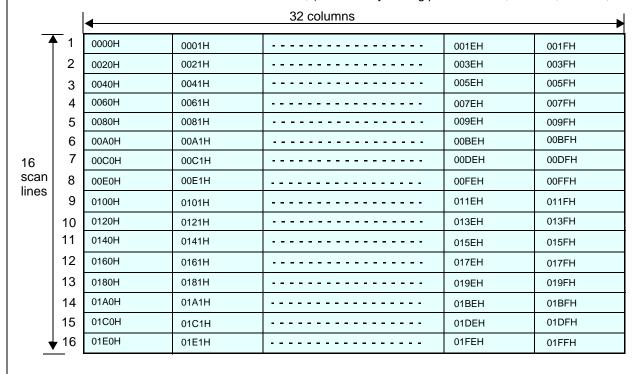



Fig.15 The relation between graphic display memory address and display position on the LCD screen

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 12.5 The Graphic Area Register

The number of columns on a horizontal line is decided by both hardware setting and software setting. The hardware setting of the MD2 pin and the MD3 pin selects hardware column number. The value of the Graphic Area Register selects the actual number of columns displayed on the LCD screen. For example, if hardware selection of display column number is 32 columns (MD2=1, MD3=1) and the Graphic Area Register is programmed with 14H (20 columns), then only 20 columns will be displayed on each horizontal line. In Graphic Display mode, the width of a column is 8 dots in horizontal direction.

Hardware setting of columns per line only decides the "maximum" number of columns that can possibly be displayed on the LCD screen. Software setting of columns per line decides the actual display column number.

The following figure illustrates the hardware setting and software setting of columns.

Physical LCD size= 20 columns, 2 lines.

Grapic Home Address Register= 0000H.

Graphic Area Register= 0014H= 20(decimal) (software setting of columns per line).

MD2=H, MD3=H --> 32 columns (hardware setting of columns per line.

DUAL=H, MDS=L, MD0=H, MD1=H --> 2 lines (hardware setting of line number)

| 0000 | 0001   |       | 0012 | 0013 | 0014  | 0015 | <br>001E | 001F |
|------|--------|-------|------|------|-------|------|----------|------|
| 0014 | 0015   |       | 0026 | 0027 | 0028  | 0029 | <br>0032 | 0033 |
| 0028 | 0029   |       | 003A | 003B | 003C  | 003D | <br>0046 | 0047 |
| 003C | 003D   |       | 004E | 004F | 0050  | 0051 | <br>005A | 005B |
| 0050 | 0051   |       | 0062 | 0063 | 0064  | 0065 | <br>006E | 006F |
| 0064 | 0065   |       | 0076 | 0077 | 0078  | 0079 | <br>0082 | 0083 |
| 0078 | 0079   |       | 008A | 008B | 008C  | 008D | <br>0096 | 0097 |
| 008C | 008D   |       | 009E | 009F | 00A0  | 00A1 | <br>00AA | 00AB |
| 00A0 | 00A1   |       | 00B2 | 00B3 | 00B4  | 00B5 | <br>00BE | 00BF |
| 00B4 | 00B5   |       | 00C6 | 00C7 | 00C8  | 00C9 | <br>00D2 | 00D3 |
| 00C8 | 00C9   |       | 00DA | 00DB | 00DC  | 00DD | <br>00E6 | 00E7 |
| 00DC | 00DD   |       | 00EE | 00EF | 00F0  | 00F1 | <br>00FA | 00FB |
| 00F0 | 00F1   |       | 0102 | 0103 | 00104 | 0105 | <br>011E | 011F |
| 0104 | 0105   |       | 0126 | 0127 | 0128  | 0129 | <br>0132 | 0133 |
| 0128 | 0129   |       | 013A | 013B | 013C  | 013D | <br>0146 | 0147 |
| 013C | 013D   |       | 014E | 014F | 0150  | 0151 | <br>015A | 015B |
|      |        |       |      |      | ·     |      |          |      |
| •    |        |       |      | -    |       |      |          |      |
| 1.0  | CD Die | snlav |      |      |       |      |          |      |

LCD Display
Only 20 columns are displayed.

Because of being adjusted by GA to display only 20 columns on each line, the 8 pixels of memory location 0014H will be moved to the first position on the second line of the LCD display.

Fig.16 Graphic Area Register

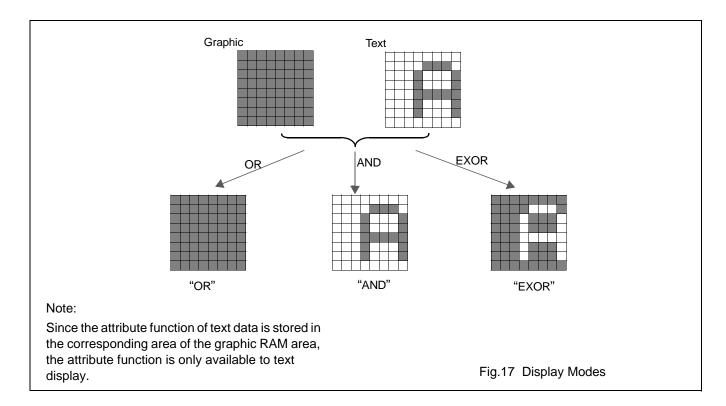
## Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 13 MODE SET

## 13.1 commands

The display mode is defined by these commands. Display mode does not change until the next command is issued. These commands are listed in Table 12.

Table 12 Display Mode set


| CODE      | OPERATION                          |
|-----------|------------------------------------|
| 1000 x000 | OR mode.                           |
| 1000 x001 | EXOR mode.                         |
| 1000 x011 | AND mode.                          |
| 1000 x100 | Text Attribute mode.               |
| 1000 0xxx | Internal Character Generator mode. |
| 1000 1xxx | External Character Generator mode. |

OR mode, EXOR mode, and AND mode display, respectively, the logical operation of text display and graphic display. Text Attribute mode is for setting the display attribute, such as reverse display and blinking, of text. In Text Attribute mode, graphic data can not be displayed, because the memory space for graphic data is used to store attribute of text.

In Internal Character Generator mode, Character Codes 00~7FH (128 fonts) access on-chip Font ROM and Character Codes 80~FFH (128 fonts) access external user-defined Character Generator RAM (Font RAM).

In External Character Generator mode, all Character Codes (00~FFH) access external user-defined Character Generator RAM (Font RAM).

## 13.2 Example



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

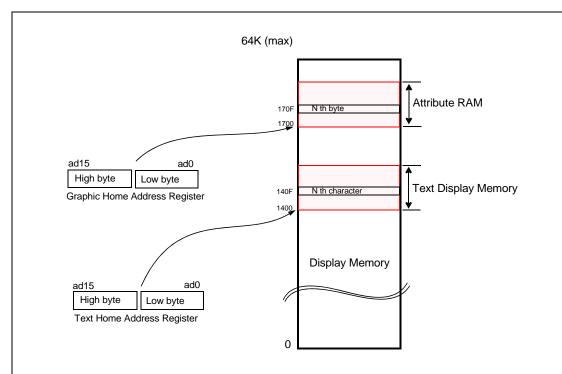
## 13.3 Attribute of text data

An attribute can be defined for each text data (character). The attributes are: reverse display, blinking, and Inhibit. Attribute data for text characters are stored in a block of memory space in the Display Memory, called Attribute RAM, which may occupy the Graphic Display RAM or in another block of Display Memory.

To use attribute function, it is first necessary to re-assign the Graphic Home Address Register to point at the first byte of the Attribute RAM area. Second, it is necessary to write attribute data for each character. The attribute data for the first character in Text RAM should be written to the first byte of the Attribute RAM and the attribute data of the Nth character should be written to the Nth byte in the Attribute RAM.

Although, in Attribute mode, graphic display is automatically disabled, graphic display still needs to be turned on to enable attribute function, by executing Display Mode command Text ON, Graphic ON (code 1001 11xx). Please refer to Section 14.

The bit definition for the attribute RAM byte (1 byte) of a text data (character) is defined in Table 13 and Table 14.


Table 13 Attribute RAM byte

| BIT7       | BIT6       | BIT5       | BIT4       | BIT3 | BIT2 | BIT1 | BIT0(LSB) |
|------------|------------|------------|------------|------|------|------|-----------|
| don't care | don't care | don't care | don't care | d3   | d2   | d1   | d0        |

Table 14 Description of Attribute RAM byte

| d3 d2 d1 d0 | attribute                |
|-------------|--------------------------|
| 0000        | Normal display.          |
| 0101        | Reverse display          |
| 0011        | Inhibit display          |
| 1000        | Blink of normal display  |
| 1101        | Blink of reverse display |
| 1011        | Blink of inhibit display |

## Dot Matrix STN LCD Controller with 1024-byte Font ROM



## Note:

- 1. Graphic Home Address should be re-assigned to point at the first byte of Attribute RAM.
- 2. The attribute of the Nth character is stored at the Nth byte of Attribute RAM.
- 3. Graphic display is automatically disabled, but Graphic display still needs to be turned on.
- 3. Example:
- Text Home Address Register= 1400H.
- Graphic Home Address Register= 1700H.
- If the attribute of the 16th character of the displayed text is to be Reverse Blink, then the value 0DH should be written to memory byte at address 170FH.

Fig.18 Attribute of characters and Attribute RAM

## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 14 DISPLAY MODE COMMANDS

The Display Mode command is used to turn on or turn off text display, graphic display, or cursor blink. It can also be used to turn off the whole display.

The Display Mode command format is given below. Note that the leading 4 bits of the command are always 1001.

Table 15 Bit allocation of Display Mode command

| Bit allocation | Description                                | Remark               |
|----------------|--------------------------------------------|----------------------|
| Bit 7, 6, 5, 4 | 1001                                       |                      |
|                | Turn of/off graphic display.               |                      |
| Bit 3          | d3=1 $\rightarrow$ graphic display on;     | Graphic ON/OFF flag. |
|                | $d3=0 \rightarrow graphic display off.$    |                      |
|                | Turn of/off text display.                  |                      |
| Bit 2          | $d2=1 \rightarrow \text{text display on.}$ | Text ON/OFF flag.    |
|                | $d2=0 \rightarrow text display off.$       |                      |
|                | Turn of/off cursor.                        |                      |
| Bit 1          | $d1=1 \rightarrow cursor on.$              | Cursor ON/OFF flag.  |
|                | $d1=0 \rightarrow cursor off.$             |                      |
|                | Turn of/off cursor blink.                  |                      |
| Bit 0          | $d1=1 \rightarrow cursor blink on.$        | Cursor blink flag.   |
|                | $d1=0 \rightarrow cursor blink off.$       |                      |

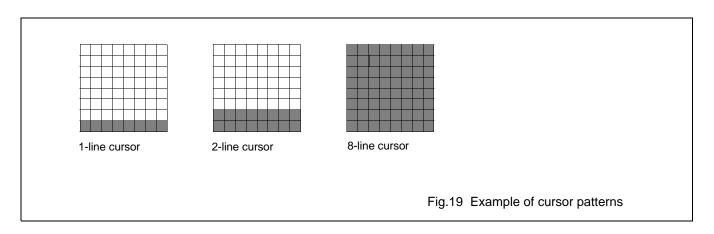
Table 16 Display Mode command codes

| code      | Function              |
|-----------|-----------------------|
| 1001 0000 | Display OFF.          |
| 1001 xx10 | Cursor ON, blink OFF. |
| 1001 xx11 | Cursor ON, blink ON.  |
| 1001 01xx | Text ON, graphic OFF. |
| 1001 10xx | Text OFF, graphic ON. |
| 1001 11xx | Text ON, graphic ON.  |

## Note:

- 1. Both text display and graphic display must be turned ON for displaying combination of text and graphics.
- 2. Both text display and graphic display must be turned ON for enabling attribute function of tex.
- 3. For example, the comamand for graphic and text display on, with cursor, no blink= 1001 1110= 9E hex.

# Dot Matrix STN LCD Controller with 1024-byte Font ROM


## 15 CURSOR PATTERN SELECT

A cursor pattern can have horizontal raster scan lines in the range from 1 to 8. The Cursor Display command must be turned on to display cursor. The location of cursor is defined by Cursor Point register.

The following table gives code for commands of selecting horizontal lines of cursor pattern.

Table 17 Cursor pattern selection

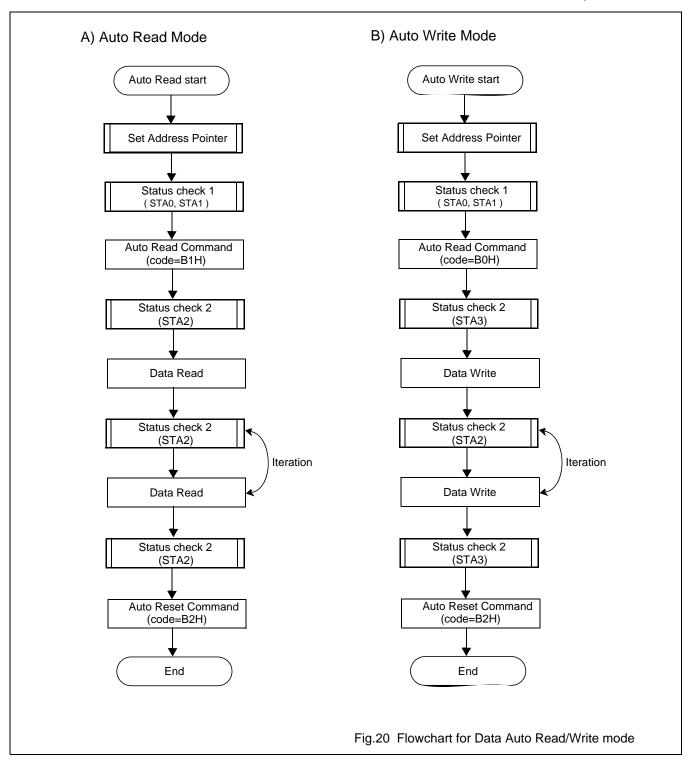
| Code      | horizontal lines of cursor |  |  |
|-----------|----------------------------|--|--|
| 1010 0000 | One scan line.             |  |  |
| 1010 0001 | Two scan lines.            |  |  |
| 1010 0010 | Three scan lines.          |  |  |
| 1010 0011 | Four scan lines.           |  |  |
| 1010 0100 | Five scan lines.           |  |  |
| 1010 0101 | Six scan lines.            |  |  |
| 1010 0110 | Seven scan lines.          |  |  |
| 1010 0111 | Eight scan lines.          |  |  |



## Dot Matrix STN LCD Controller with 1024-byte Font ROM

## 16 DATA AUTO READ/WRITE COMMANDS

Data Auto Read, Data Auto Write, and Auto Mode Reset commands are single-byte commands. Auto Read/Write commands are useful for transferring a block of data to or from the Display Memory. After sending a Data Auto Read or Data Auto Write command, it is not necessary to send Data Read or Data Write command for each data byte transfer to or from the Display Memory.


Address Pointer Register should be programmed to point at the initial byte address in the Display Memory. The Address Pointer Register will be automatically incremented by one after each Data Read/Data Write. After finishing the data transfer, a Auto Mode Reset command should be issued to terminate Auto Read/Write mode.

Note that no commands will be accepted during Auto Read/Write mode.

Table 18 Data Auto Read/Write commands.

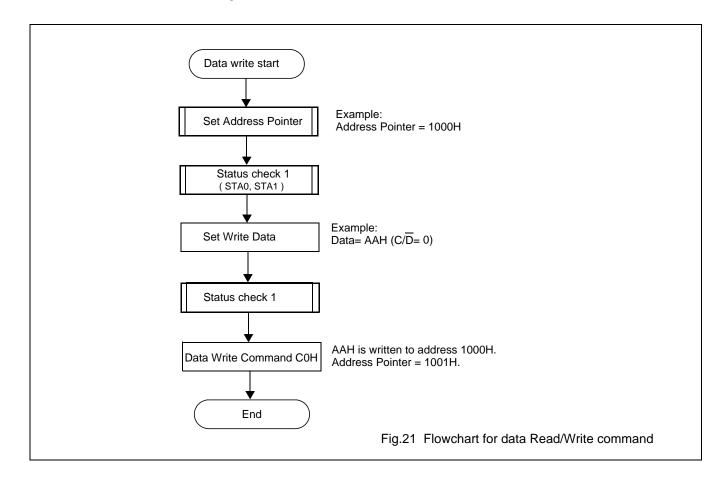
| Code(Binary) | Code(Hex) | Description                     |
|--------------|-----------|---------------------------------|
| 1011 0000    | B0        | Set Data Auto Write mode.       |
| 1011 0001    | B1        | Set Data Auto Read mode.        |
| 1011 0010    | B2        | Terminate Auto Read/Write mode. |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM



### Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 17 DATA READ/WRITE COMMANDS


These commands are for single-byte data transfer between the microcontroller and the Display Memory.

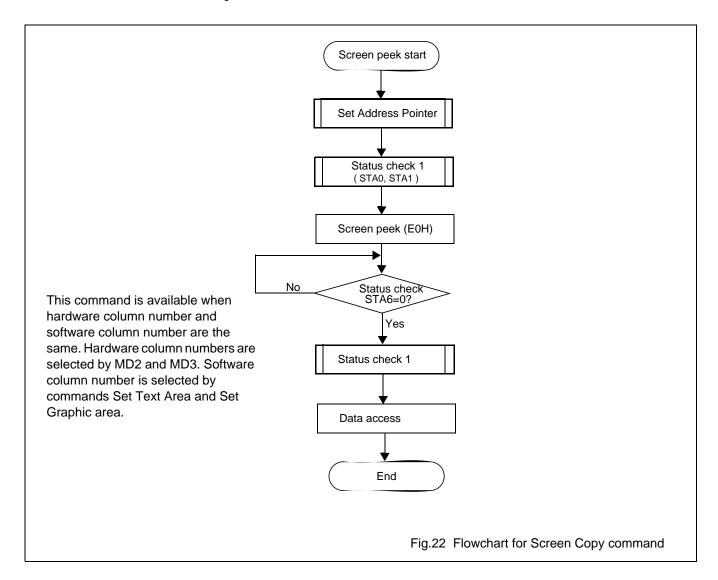
A single byte of data can be written to or read from the Display Memory by the system microcontroller. The single byte of data is located at the address pointed to by the Address Pointer register. So, before executing these commands, Address Pointer register must be programed to the desired location. After reading or writing operation, the Address Pointer register is automatically incremented or decremented by 1, or kept unchanged.

The commands are given in the following table.

| Command code (Binary) | Command code (Hex) | Description                               | Operand |
|-----------------------|--------------------|-------------------------------------------|---------|
| 1100 0000             | C0                 | Data write and increment Address Pointer. | Data    |
| 1100 0001             | C1                 | Data read and imcrement Address Pointer.  |         |
| 1100 0010             | C2                 | Data write and decrement Address Pointer. | Data    |
| 1100 0011             | C3                 | Data read and decrement Address Pointer.  |         |
| 1100 0100             | C4                 | Data write and Address Pointer unchanged. | Data    |
| 1100 0101             | C5                 | Data read and Address Pointer unchanged.  |         |

The flow chart for this command is given below.




### Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### **18 SCREEN PEAK**

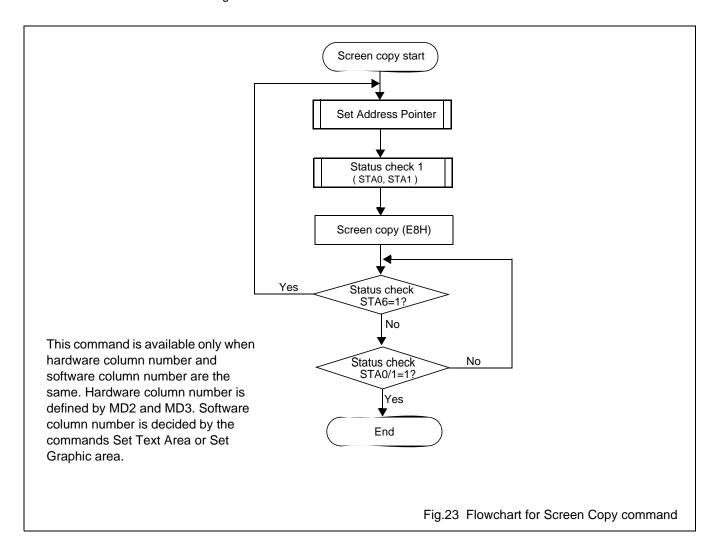
The code for this command is 1110 0000 (E0 Hex). It is used to transfer 1 byte of displayed data to the data bus. This byte of data can then be read by the host microcontroller. The logical combination of text and graphic display data on the LCD screen can be read by this command.

The status bit STA6 should be checked right after the Screen Peak command. If the address defined by the Set Address Pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

The flow chart for this command is given below.



### Dot Matrix STN LCD Controller with 1024-byte Font ROM


#### 19 SCREEN COPY

The code for Screen Copy command is 1110 1000 (E8 Hex). It copies a single raster scan line of data to the graphic area. The starting address must be set using the Set Address Pointer command.

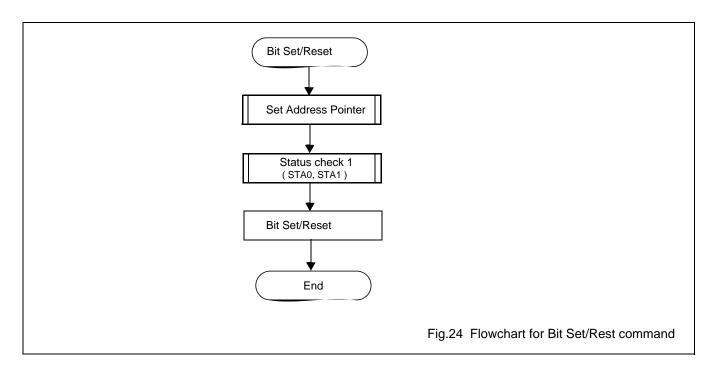
When Attribute Function is enabled, this command is not available, because the graphic area is used for storing attribute function of the text data.

Because the SAP1024B can not separate the upper screen data from the lower screen data, this command can not be used in dual-scan mode.

The flow chart for this command is given below.



# Dot Matrix STN LCD Controller with 1024-byte Font ROM


### 20 BIT SET / RESET COMMAND

Bit SET/RESET command is used to set or reset an individual bit in the Display Memory. The byte address of the bit is pointed at by the Address Pointer register. This is a one-byte command.

The command table is given below.

Table 19 Bit SET/RESET commands

| command   | Function    |
|-----------|-------------|
| 1111 0000 | Reset bit 0 |
| 1111 0001 | Reset bit 1 |
| 1111 0010 | Reset bit 2 |
| 1111 0011 | Reset bit 3 |
| 1111 0100 | Reset bit 4 |
| 1111 0101 | Reset bit 5 |
| 1111 0110 | Reset bit 6 |
| 1111 0111 | Reset bit 7 |
| 1111 1000 | Set bit 0   |
| 1111 1001 | Set bit 1   |
| 1111 1010 | Set bit 2   |
| 1111 1011 | Set bit 3   |
| 1111 1100 | Set bit 4   |
| 1111 1101 | Set bit 5   |
| 1111 1110 | Set bit 6   |
| 1111 1111 | Set bit 7   |



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### 21 CHARACTER CODE MAP (CG ROM CODE 0101)

|                                                                               | F   |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------|-----|---|---|---|---|---|---|---|---|
|                                                                               | E   |   |   |   |   |   |   |   |   |
|                                                                               | D   |   |   |   |   |   |   |   |   |
|                                                                               | С   |   |   |   |   |   |   |   |   |
|                                                                               | В   |   |   |   |   |   |   |   |   |
| _                                                                             | A   |   |   |   |   |   |   |   |   |
| The relation between character codes and character pattern (CG ROM TYPE 0101) | 9   |   |   |   |   |   |   |   |   |
| M TYP                                                                         | 8   |   |   |   |   |   |   |   |   |
| (CG RC                                                                        | 7   |   |   |   |   |   |   |   |   |
| pattern (                                                                     | 9   |   |   |   |   |   |   |   |   |
| aracter ]                                                                     | S   |   |   |   |   |   |   |   |   |
| s and ch                                                                      | 4   |   |   |   |   |   |   |   |   |
| er code                                                                       | 3   |   |   |   |   |   |   |   |   |
| charact                                                                       | 2   |   |   |   |   |   |   |   |   |
| oetween                                                                       | 1   |   |   |   |   |   |   |   |   |
| elation l                                                                     | 0   |   |   |   |   |   |   |   |   |
| The ra                                                                        | LSB | 0 | 1 | 7 | æ | 4 | S | 9 | 7 |

Character Code map (CG ROM type 0201)

Character Code Map

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

|                                                                               | Ъ   |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------|-----|---|---|---|---|---|---|---|---|
|                                                                               | E   |   |   |   |   |   |   |   |   |
|                                                                               | D   |   |   |   |   |   |   |   |   |
|                                                                               | С   |   |   |   |   |   |   |   |   |
|                                                                               | В   |   |   |   |   |   |   |   |   |
|                                                                               | А   |   |   |   |   |   |   |   |   |
| (107)                                                                         | 6   |   |   |   |   |   |   |   |   |
| TYPE (                                                                        | 8   |   |   |   |   |   |   |   |   |
| 3 ROM                                                                         | 7   |   |   |   |   |   |   |   |   |
| ttern (C                                                                      | 9   |   |   |   |   |   |   |   |   |
| acter pa                                                                      | 5   |   |   |   |   |   |   |   |   |
| ınd char                                                                      | 4   |   |   |   |   |   |   |   |   |
| codes s                                                                       | 3   |   |   |   |   |   |   |   |   |
| haracte                                                                       | 2   |   |   |   |   |   |   |   |   |
| stween c                                                                      | 1   |   |   |   |   |   |   |   |   |
| The relation between character codes and character pattern (CG ROM TYPE 0201) | 0   |   |   |   |   |   |   |   |   |
| The rei                                                                       | LSB | 0 | 1 | 2 | 8 | 4 | 5 | 9 | 7 |

Character Code Map

### Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### 22 ELECTRICAL CHARACTERISTICS

#### 22.1 Absolute maximum rating

Table 20 Absolute maximum rating

| SYMBOL                  | PARAMETER                                                | MIN. | MAX.                  | UNIT |
|-------------------------|----------------------------------------------------------|------|-----------------------|------|
| $V_{DD}$                | voltage on the VDD input.                                | -0.3 | +7.0                  | V    |
| V <sub>I</sub> (note 1) | input voltage on any pin with respect to V <sub>SS</sub> | -0.3 | V <sub>DD</sub> + 0.3 | V    |
| T <sub>stg</sub>        | storage temperature range                                | -55  | +125                  | °C   |
| T <sub>amb</sub>        | operating ambient temperature range.                     | -20  | + 70                  | °C   |

#### **Notes**

- 1. The following applies to the Absolute Maximum Rating:
  - a) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device.
  - b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effect of excessive static charge. However, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.
  - c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V<sub>SS</sub> unless otherwise noted.

#### 22.2 DC characteristics

Table 21 DC Characteristics

 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V; all voltages with respect to  $V_{SS}$  unless otherwise specified;  $T_{amb}$  = -20 to +70 °C.

| SYMBOL                  | PARAMETER                                     | CONDITIONS                 | MIN.                  | TYP. | MAX.     | UNIT |
|-------------------------|-----------------------------------------------|----------------------------|-----------------------|------|----------|------|
| $V_{DD}$                | Supply voltage                                |                            | 2.7                   | 5.0  | 5.5      | V    |
| V <sub>IL</sub>         | LOW level input voltage                       |                            | 0                     |      | 0.8      | V    |
| V <sub>IH</sub>         | HIGH level input voltage                      |                            | V <sub>DD</sub> -2.2  |      | $V_{DD}$ | V    |
| V <sub>OL</sub>         | LOW level output voltage                      |                            | -0.0                  |      | 0.3      | V    |
| V <sub>OH</sub>         | HIGH level output voltage                     |                            | V <sub>DD</sub> - 0.3 |      | $V_{DD}$ | V    |
| I <sub>STBY</sub>       | Standby current at V <sub>DD</sub> =5 volts   |                            |                       |      | 3.0      | μА   |
| I <sub>DD(VDD=5V)</sub> | Operating current at V <sub>DD</sub> =5 volts | fosc=3.0 MHz and<br>Note 1 |                       | 3.3  | 6.0      | mA   |
| fosc                    | Operating frequency                           |                            | 0.4                   | 8.0  | 12.0     | MHZ  |
| R <sub>pull-up</sub>    | Internal pull-up resistor of input pins       | Note 2, input pins         | 50                    | 100  | 200      | ΚΩ   |
| R <sub>OH</sub>         | Pull-up resistance when output is high.       | Output pins                |                       |      | 400      | Ω    |
| R <sub>OL</sub>         | Pull-low resistance when output is low.       | Output pins                |                       |      | 400      | Ω    |

#### Notes to the DC characteristics

- 1. Conditions for the measurement: MDS=L, MD0=L, MD1=L, MD2=H, MD3=H, FS0=L, FS1=L, SDSEL=L, DUAL=H, D7 to D0=1010101.
- 2. Measured for T1, T2 and RESET.

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### 22.3 Driver clock characteristics

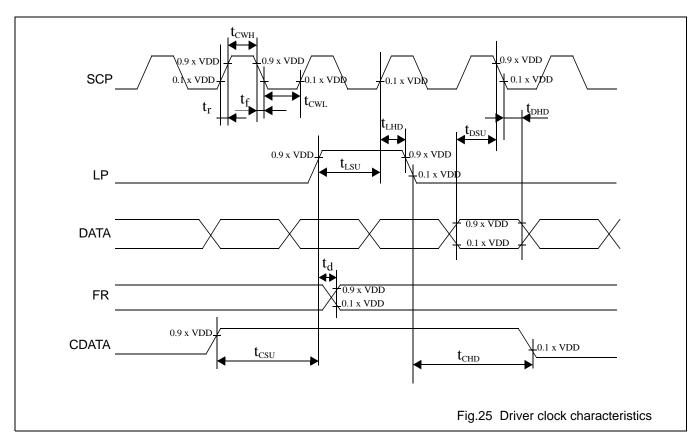



Table 22 Driver clock characteristics

 $V_{DD}$  = 5 V  $\pm 10\%$ ;  $V_{SS}$  = 0 V; all voltages with respect to  $V_{SS}$  unless otherwise specified;  $T_{amb}$  = -20 to +70  $^{\circ}C$ .

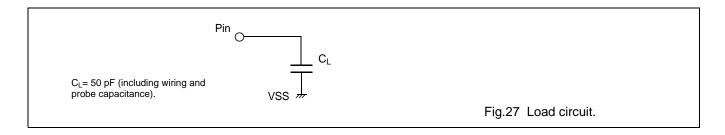
| SYMBOL                              | PARAMETER           | CONDITIONS                                       | MIN. | MAX. | UNIT |
|-------------------------------------|---------------------|--------------------------------------------------|------|------|------|
| f <sub>SCP</sub>                    | Operating frequency | $T_{amb} = -10 \text{ to } +70 ^{\circ}\text{C}$ |      | 2.75 | MHz  |
| T <sub>CWH</sub> , T <sub>CWL</sub> | SCP pulse width     |                                                  | 150  |      | ns   |
| $T_r, T_f$                          | SCP Rise/Fall time  |                                                  |      | 30   | ns   |
| t <sub>LSU</sub>                    | LP set-up time      |                                                  | 150  | 290  | ns   |
| t <sub>LHD</sub>                    | LP hold time        |                                                  | 5    | 40   | ns   |
| t <sub>DSU</sub>                    | Data set-up time    |                                                  | 170  |      | ns   |
| t <sub>DHD</sub>                    | Data hold time      |                                                  | 80   |      | ns   |
| t <sub>d</sub>                      | Frame delay time    |                                                  |      | 90   | ns   |
| t <sub>CSU</sub>                    | CDATA set-up time   |                                                  | 450  | 850  | ns   |
| t <sub>CHD</sub>                    | CDATA hold time     |                                                  | 450  | 950  | ns   |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### 22.4 Microcontroller bus interface timing



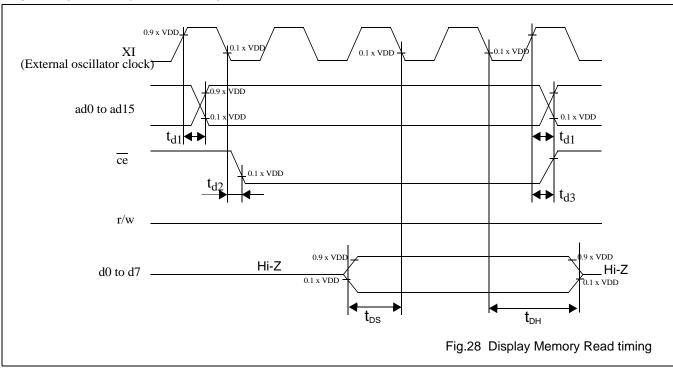

Table 23 Microcontroller interface timing


 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V;  $T_{amb}$  = -20 °C to +70°C.

| symbol                            | parameter           | MIN.               | MAX. | test conditons | Unit |
|-----------------------------------|---------------------|--------------------|------|----------------|------|
| t <sub>CDS</sub>                  | C/D set-up time     | 100                |      |                | ns   |
| t <sub>CDH</sub>                  | C/D hold time       | 10                 |      |                | ns   |
| t <sub>RD</sub> , t <sub>WR</sub> | RD, WR pulse width  | RD, WR pulse width |      |                | ns   |
| t <sub>AS</sub>                   | Address set-up time | 0                  |      |                | ns   |
| t <sub>AH</sub>                   | Address hold time   | 0                  |      |                | ns   |
| t <sub>DS</sub>                   | Data set-up time    | 80                 |      |                | ns   |
| t <sub>DH</sub>                   | Data hold time      | 40                 |      | Note           | ns   |
| t <sub>ACC</sub>                  | Access time         |                    | 150  | Note           | ns   |
| t <sub>OH</sub>                   | Output hold time    | 10                 | 50   | Note           | ns   |

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### Note:


The measurement is with the load circuit connected.



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### 22.5 Display Memory Read/Write Timing

### 22.5.1 DISPLAY MEMORY READ TIMING



### 22.5.2 DISPLAY MEMORY WRITE TIMING

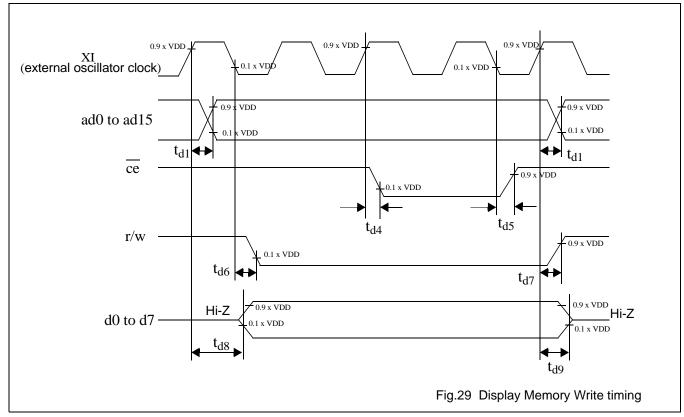
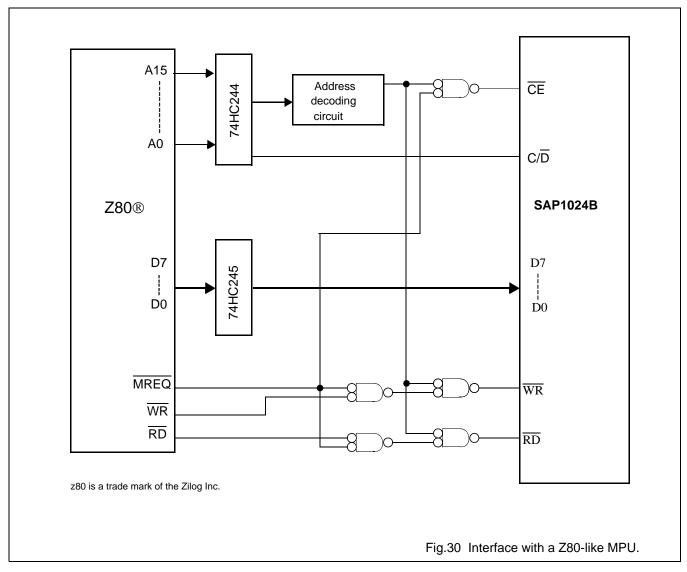


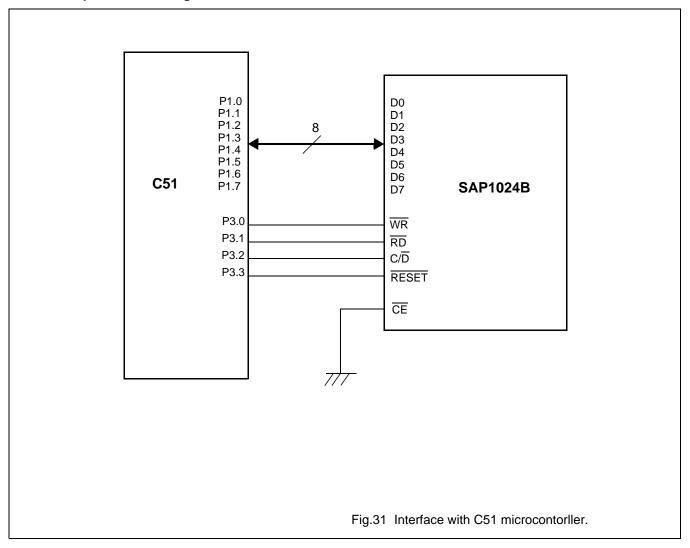

Table 24 Switcing characteristics (3)

# Dot Matrix STN LCD Controller with 1024-byte Font ROM


 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V;  $T_{amb}$  = -20 °C to +70°C.

| symbol          | parameter MIN. MAX. test condition |                   | test condition | unit                                     |    |
|-----------------|------------------------------------|-------------------|----------------|------------------------------------------|----|
| t <sub>d1</sub> | Address delay time                 |                   | 250            |                                          | ns |
| t <sub>d2</sub> | ce fall delay time (Read)          |                   | 180            |                                          | ns |
| t <sub>d3</sub> | ce rise delay time (Read)          | delay time (Read) |                |                                          |    |
| t <sub>DS</sub> | Data set-up time                   | 0                 |                |                                          | ns |
| t <sub>DH</sub> | Data hold time                     | 30                |                |                                          | ns |
| t <sub>d4</sub> | ce fall delay time (Write)         |                   | 200            |                                          | ns |
| t <sub>d5</sub> | ce fall delay time (Write)         |                   | 200            |                                          | ns |
| t <sub>d6</sub> | r/w fall delay time                |                   | 180            |                                          | ns |
| t <sub>d7</sub> | r/w rise delay time                |                   | 180            |                                          | ns |
| t <sub>d8</sub> | Data stable time                   |                   | 450            | Refer to Fig.27 for measuring condition. | ns |
| t <sub>d9</sub> | Data hold time                     |                   | 200            |                                          | ns |

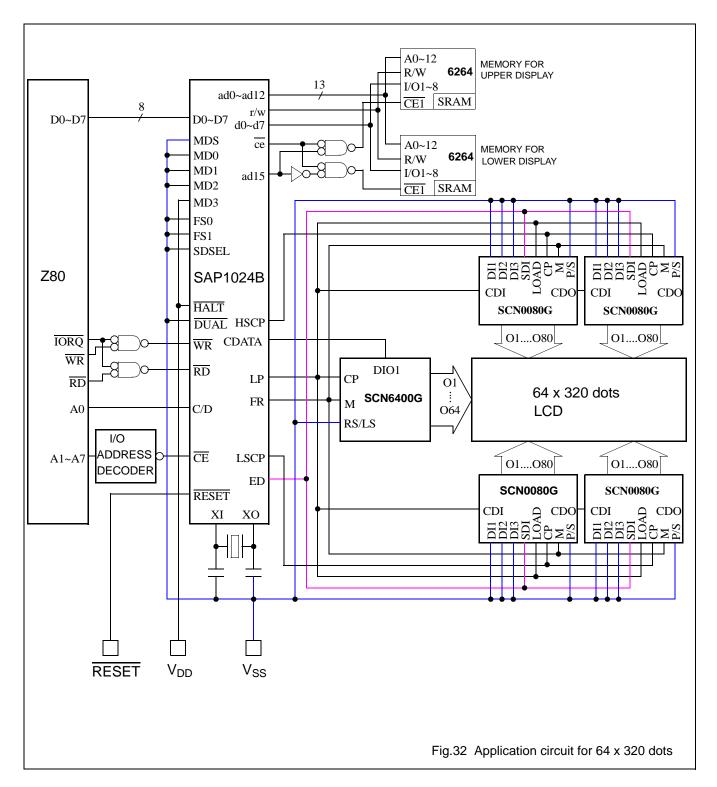
# Dot Matrix STN LCD Controller with 1024-byte Font ROM


### 23 EXAMPLE OF INTERFACE CIRCUITS

# 23.1 Example for Interfacing with a Z80-like microcontroller

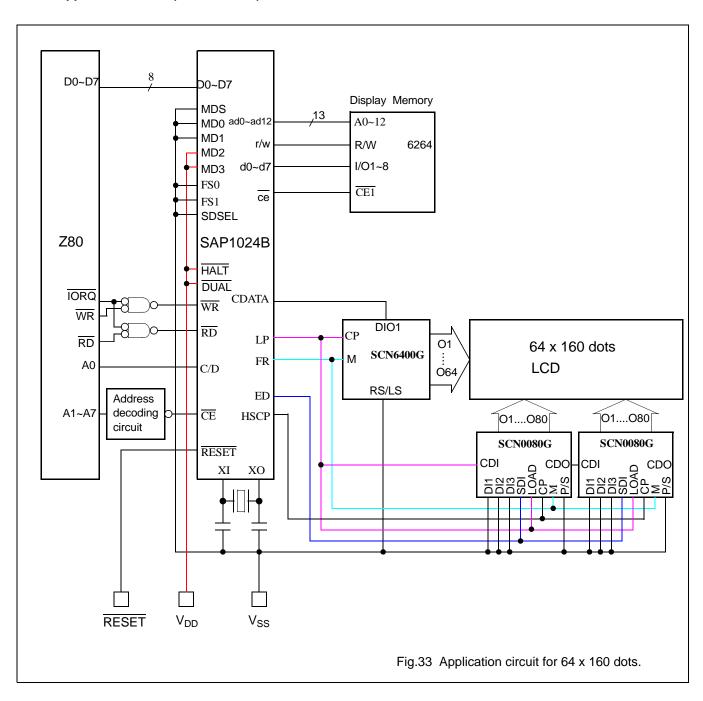


# Dot Matrix STN LCD Controller with 1024-byte Font ROM


### 23.2 Example for interfacing with a C51 microcontroller



### Dot Matrix STN LCD Controller with 1024-byte Font ROM


### 24 APPLICATION CIRCUIT

#### 24.1 Application circuit (64 x 320 dots)



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### 24.2 Application circuit (64 x 160 dots)



# Dot Matrix STN LCD Controller with 1024-byte Font ROM

### **25 PIN CIRCUITS**

Table 25 MOS-level schematics of all input, output, and I/O pins.

| SYMBOL                                                                        | Input/<br>output                     | CIRCUIT                                 | NOTES                                                                                     |
|-------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|
| r/w, ce, ad0~ad15, ce0, ce1, HOD, ED, HSCP, LP, CDATA, FR, CH1, CH2, DPSON    | Outputs                              | Data VSS M VSS M                        | These outputs are for interface with Display Memory, COMMON drivers, and SEGMENT drivers. |
| MDS, MD0,<br>MD1, MD2,<br>MD3, FS0,<br>FS1, WR,<br>RD, CE, C/D,<br>DUAL, SDEL | Inputs                               | VDD<br>VSS 777                          |                                                                                           |
| RESET,<br>HALT, T1, T2                                                        | Input<br>with<br>internal<br>pull-up | VDD |                                                                                           |
| XI, XO                                                                        | Input<br>and<br>output               | XI VDD XO XO VDD XO XO VSS 777          | The circuit encircled inside the red dashed frame is the oscillator circut.               |

| SYMBOL          | Input/<br>output | CIRCUIT                          | NOTES |
|-----------------|------------------|----------------------------------|-------|
| D0~D7,<br>d0~d7 | I/O              | Output Enable  Data out  Data in |       |

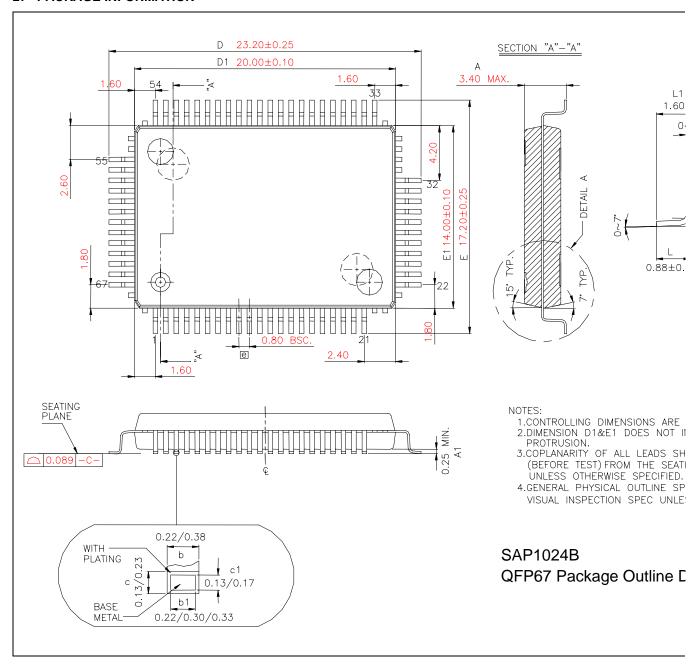
2006 Jul 28

### Dot Matrix STN LCD Controller with 1024-byte Font ROM

#### **26 APPLICATION NOTES**

• After power-on, it is necessary to reset the SAP1024B. To ensure complete reset, RESET should be kept L for at least 5 XI oscillator period.

- When HALT =L, the oscillation stops. The power supply of the LCD must now be turned off to protect the LCD from DC bias.
- The HALT function includes the RESET function.
- The SAP1024B maintains an internal column counter and a line counter. The column counter indicates which character
  in the horizontal direction is being display. The line counter indicates which character in the vertical direction is being
  displayed. Both the column counter and the line counter are cleared to zero at RESET. Therefore, after RESET, the
  starting position of display is at the leftmost position of the topmost line. Other internal registers are not cleared.
- Disable the display using the clear-display command.
- The status check must be performed before data or commands are sent, to ensure that the SAP1024B is ready for accepting new command or data.
- Hardware interrupt to the host microcontroller in the middle of data read/write or status check may cause erroneous operation.
- STA0 and STA1 must be checked simultaneously.
- The character codes used by the SAP1024B are different from ASCII codes.


2006 Jul 28 56 of 59 data sheet (v7.1)

STN LCD Driver data sheet (v7.1)

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

**SAP1024B** 

### **27 PACKAGE INFORMATION**



2006 Jul 28 57

STN LCD Driver data sheet (v7.1)

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

**SAP1024B** 

#### 28 SOLDERING

#### 28.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. For more in-depth account of soldering ICs, please refer to dedicated reference materials.

### 28.2 Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, please contact Avant for drypack information.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

### 28.3 Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

#### 28.4 Repairing soldered joints

Fix the component by first soldering two diagonally- opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

2006 Jul 28 58

STN LCD Driver data sheet (v7.1)

# Dot Matrix STN LCD Controller with 1024-byte Font ROM

**SAP1024B** 

### 29 LIFE SUPPORT APPLICATIONS

Avant's products, unless specifically specified, are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Avant customers using or selling Avant's products for use in such applications do so at their own risk and agree to fully indemnify Avant for any damages resulting from such improper use or sale.

2006 Jul 28 59